Response-Time Analysis
of a Soft Real-time
NVIDIA Holoscan
Application

Philip Schowitz, Arpan Gujarati THE UNIVERSITY
w OF BRITISH COLUMBIA

University of British Columbia
Soham Sinha

NVIDIA @2 NVIDIA.

A

Edge Computing

® Alis fueling resource-

intensive applications

on the edge
® Embedded platforms

become more complex

O Harder to develop apps

Frameworks and Limitations

® Development frameworks

Clara for Medical Devices

[]] u [] Process streaming data in real time with scalable,
b u I lt W I-t h late n Cy I n I I l I n d software-defined devices built with the NVIDIA
Clara™ for Medical Devices platform. /

promises low latency SDK

Benefits of Holoscan

T

= 7/

for medical devices

® But what about guarantees?

Low Latency

Tap into the Holoscan SDK'’s data transfer latency tool to

O H O los C a n re li es O n p rOﬁ li n g . measure complete, end-to-end latency for video

processing applications.

What's wrong with profiling?

® Profiling to learn timing properties has many issues

o The response time bound may be unsafe
o Application development must be finished

o Profiling can be costly in time and compute

Research Question:

Can we develop a response time bound for any
Holoscan application, given information about it?

o

Holoscan

Assume
execution

time known
void FormatConverterOp::compute(InputContext& op_input, OutputContext& op_output,
® Holoscan apps are

ExecutionContext& context) {

Holoscan Basics

7/ Process input message

auto in_message = op_input.receive<gxf: :Entity>("source_video").value();

// get the CUDA stream from the input message
made u P of o pera tors i

cuda_strean_handler_.from message(context.context(), in_message);
if (stream_handler_result XF_SUCCESS) {

throw std: :runtime_error("Failed to get the CUDA stream from incoming messages”);

}

/7 assign the CUDA stream to the NPP stream context
O B l I f I t I t npp_stream_ctx_.hStream = cuda_stream_handler_.get_cuda_stream(context.context());
O C S O CO e a ru I l nvidia::gxf::Shape out_shape{0, 0, 0};
void* in_tensor_data = nullptr;

nvidia::gxf::PrimitiveType in_primitive_type = nvidia::gxf::PrimitiveType::kCustom;
nvidia::gxF: MemoryStorageType in_memory_storage_type = nvidia::gxf::MemoryStorageType: :kHost;
int32_t rows = 0;
int32_t columns = 0;
on reads L i

0;
int16_t out_channels = 0;

std: :vectorcnvidia: :gxf: :ColorPlane> in_color_planes;

C ll _tl G P l | /7 get Handle to underlying nvidia::gxf::Allocator from std::shared_ptr<holoscan: :Allocator>

auto pool =

nvidia::gxf: :Handlecnvidia: :gxi

Allocator: :Create(context. context(), pool_->gxf_cid());

// Get either the Tensor or VideoBuffer attached to the message
bool is_video_buffer;

® Operators scheduled

video_buffer = holoscan: :gxf: :get_videobuffer(in_message);
is_video_buffer = true;

} catch (const std::runtime_error& r_) {

HOLOSCAN_LOG_TRACE("Failed to read VideoBuffer with error
is_video_buffer = false;

by an executor

// Convert VideoBuffer to Tensor

auto frame = video_buffer.get();

{}", std::string(r_.what()));

What do Holoscan Applications Look Like?

REDRAW

Data flow - »

Video Stream

Operator - » i

Format

Converter
resize plax_cham

Format

Converter
preprocess plax_cham
(resize + float32)

Format

Converter
preprocess aortic_ste
(resize + float32)

Format

Converter
preprocess bmode_pers
(resize + float32)

Multi Al Inference

PLAX Chamber
Measurements Model

Aortic Stenosis Binary
Classifier Model

B-mode Perspective
Classifier Model

Visualizer

iCardio
key points, areas, lines

Multi Al

Postprocessor
postprocess plax_cham

Holoscan Internals

Video Stream Format

Replayer Converter

LSTM
TensorRT
Inference

Tool Tracking
Postprocessor

Holoviz
Visualizer

Holoscan Internals

Video Stream Format

Replayer Converter

LSTM
TensorRT

Tool Tracking
Postprocessor

Holoviz
Visualizer

Inference

Format
Converter

Downstream

Condition

LSTM
TensorRT
Inference

Message

Available

Scheduling information Condition

Holoscan
Operator

Port

Data Flow

Control Flow

Scheduling

Condition

. Queue

10

Downstream Examples

Example 1

Why do we need
the downstream
condition?

Why Downstream?

12

Why Downstream?

From first From first
input item input item

13

Why Downstream?

Second input From first From first
item input item input item

100 50 300 200

Why Downstream?

Second input From first From first &
item input item input item ‘ j

Why Downstream?

Second input
item

100 50

From first
input item

From first
input item

100 Queued! 5o

From first
input item

From first
input item

16

Why Downstream?

Second input From first From first
input item input item

From first From first
input item

100 Queued! 5o 300 200
Takeaway: Violates correctness condition

inputitem @ Dropped!

17

Downstream Examples

Example 1 Example 2
Why do we need How does
the downstream downstream affect

condition? response times?

Downstream and Response Times

Q O, Q @)

1 il 1,2 2

' Chain
Let’s assume... Chain 100 1000

Linear chain of
length 2
Period = 100
Queue size = 1

No overheads

19

Let’s assume... Chain

Downstream and Response Times

Linear

t=0
Linear chain of

length 2
Period = 100

Queue size = 1

No overheads

20

Let’s assume... Chain

Downstream and Response Times

Linear

t=0
Linear chain of

t =100
length 2
Period = 100

Queue size = 1

No overheads

21

Downstream and Response Times

Linear
Let’s assume... Chain
_ _ t=0
e Linear chain of
t =100
length 2 Downstream
I" Blocking ~a |
e Period =100 t=200 ——~[—-{N
e Queue size = 1
e No overheads

22

Let’s assume... Chain

Downstream and Response Times

Q, O,

1

Linear

e1=
100

t=0

Linear chain of M

t=100
len gt h 2 Downstream

. I I
Queue size = 1t=300 M

(I, dropped)
No overheads

23

Downstream and Response Times

Linear

Let’s assume... Chain

[] t=0

e Linear chain of

t =100
length 2 Downstream
. | l
e Period =100 t=200 ﬂ
e Queue size = 1t=300 H
. (|4 dropped)
e Nooverheads (I5- 1, dropped)

24

Let’s assume... Chain

Downstream and Response Times

Linear

t=0

Linear chain of

len gt h 2 Downstream

Queue size = 1t=300
y (|4 dropped)

No overheads (I;- 1, dropped)

25

Downstream and Response Times

Linear
Let’s assume... Chain

e Linear chain of --------

len gth 2 Downstream (I, dropped)

(I,,- 1, dropped)

2

e Queue size = 1t=300
(|4dropped)

e Nooverheads (I;- 1, dropped) e

Downstream and Response Times

Linear
Let’s assume... Chain

t=0
e Linear chain of

=100 —N— N - roo0 oo - N
length 2 Downstream (I, dropped)

| |] (|14 - dropped)
o Period=100 =0 o B

’ . Pattern repeats
e Queue size = 1t=300 M . periodically

- (|4 dropped)

e Nooverheads (I;- 1, dropped)

27

. Takeaway: WCRT
Downstream and Response TImes of 2900 with total

a o0 a o operator execution

, Linear 1 : " - time of just 1100
Let’s assume... Chain i
e Linear chain of T “« |
length 2 Downstream " (I, dropped)
| |) (I,,- 1, dropped)
e Period =100 t=200 ——[—~{
% . Pattern repeats
e Queue size = 1t=300 H periodically
y (|4 dropped)
e Nooverheads (I;- 1, dropped)

28

Downstream Examples

Example 1 Example 2
Why do we need How does
the downstream downstream affect

condition? response times?

Example 3

How downstream
can cause timing
anomalies

Downstream Blocking Causes Timing Anomalies

Original O O O 04 WCRT: 1100

configuration: 1 2 3
500 0 100 0 100 0 400

30

Downstream Blocking Causes Timing Anomalies

Original O O O O WCRT: 1100
configuration: 1 2 3 4

500 0 100 0 100 0 400

Work hard optimizing O, to lower execution time...

31

Downstream Blocking Causes Timing Anomalies

Original O O O 04 WCRT: 1100

configuration: 1 2 3
500 0 100 0 100 0 400

Work hard optimizing O, to lower execution time...

Possible 0O
optimization: 1
300 100 100 300 100 300 400

O, WCRT: 1600

32

Downstream Blocking Causes Timing Anomalies

Original O O O 04 WCRT: 1100

configuration: 1 2 3
500 0 100 0 100 0 400

Work hard optimizing O, to lower execution time...

Possible 0O
optimization: 1 2 3
300 100 100 300 100 300 400

...but we encounter a timing anomaly!

O, WCRT: 1600

33

S

Response-Tim
e
Analysis

Approaches to RTA

® Many DAG response-time analyses already exist
O Why not employ them?

® Consider a period T and relative deadline D...
o Analyses commonly assume T =D

® But Holoscan wants to leverage parallelism

o No hard deadline, maximizing throughput (T is small)

35

Leverage Parallelism

® Can process the first,
second, third inputs
simultaneously
® Holoscan geared to
pipelined execution
o Multiple jobs in
same DAG

—

w
1

Lr

T T T T
5000 6000 7000 8000 9000 10000
Time

#Operators working
N

[
!

0

Operator parallelism over time

36

RTA Strategy

1. Response time bound
for a linear chain

2. Why chain analysis
insufficient for DAGs

3. Generalize response

time bound for any
arbitrary DAG

37

Assumptions

® Queue size = 1

o Holoscan default

® All operators can run in parallel

o NVIDIA embedded platforms have enough cores to do this

® |nputs arrive with a period as low as 0

® Operator execution time fixed throughout entire run

38

Assumptions Ours is the first timing

analysis of Holoscan
® Queue size = 1

o Holoscan default

® All operators can run in parallel

o NVIDIA embedded platforms have enough cores to do this

® |nputs arrive with a period as low as 0

® Operator execution time fixed throughout entire run

39

Assumptions Ours is the first timing

analysis of Holoscan

® Queue size = 1 These match how the

o Holoscan default system is used
® All operators can run in parallel

o NVIDIA embedded platforms have enough cores to do this

® |nputs arrive with a period as low as 0

® Operator execution time fixed throughout entire run

40

Linear Chain Response Time Bound

meut. —= RO — {0 — outeur

200 1000 500

41

Linear Chain Response Time Bound

Key idea: Bottleneck is
operator with greatest

xecution time

Input Output

42

Linear Chain Response Time Bound

Key idea: Bottleneck is
operator with greatest

xecution time

Input Output

Upper bound: €’ b+ Y e
1=b+1

43

Linear Chain Response Time Bound

Key idea: Bottleneck is
operator with greatest

xecution time
@)

Input

Output

Sum of worst-case

n
Upper bound: 6gb b+ Z G?b} execution times of

—o— i=b+1 operators

Bottleneck worst-case execution following
time multiplied by its index bottleneck

44

Linear Chain Response Time Bound

2*1000 + 500 = 2500 Key idea: Bottleneck is

operator with greatest

xecution time
O, Output
OOEm‘ 500

Input
200 g

Sum of worst-case

n
Upper bound: 6gb b+ Z G?b} execution times of

—o— i=b+1 operators

Bottleneck worst-case execution following
time multiplied by its index bottleneck

45

Chains vs DAGs

Second input
item

Chain 0, ®

From first
input item

O

K

100

50

300

200

Chains vs DAGs

Second input From first
item input item
Chain 0, ® 0,
100 50 300 200
Second input _ From first From first
item input item input item

DAG

Chains vs DAGs

Second input PrPCGSSIng From first
item / input item

»
Chain 0, ® ®

O

2 K

100 50 300 200

Second input _ From first From first
item input item input item

DAG

\ 100 50 300 200
\

N Not processing

48

Chains vs DAGs

Second input PrPCGSSIng From first
item / input item

»
Chain 0, ® ®

O

2 K

100 50 300

Second input _ From first
item input item

DAG

\ 100 50 300
\

N Not processing

From first &
input item ‘ }

Culprit

49

Chains vs DAGs

Second input _
item

DAG

input item

From first

From first
input item

50

Chains vs DAGs

Second input _ From first From first
item input item input item

DAG

100 50 4 300 200
I

Finishes processing

51

Chains vs DAGs

Second input _ From first From first
item input item input item

DAG

100 50 300 200

Second input _ From first
item input item

52

Chains vs DAGs

Second input _ From first From first
item input item input item

DAG

100 50 300 200 Queue
will empty

Second input _ From first

53

Chains vs DAGs

Second input _ From first From first
item input item input item

DAG

100 50 300 200

Second input _ From first
item input item

100 50 300 I‘ 200

Begins processing

54

Chains vs DAGs

Second input _
item

DAG

100

From first From first
input item input item

Second input _

Only starts now

From first
input item

50 300 I‘ 200

Begins processing

55

Chains vs DAGs

Second input _ From first From first
item input item input item

DAG

100 50 300 200

Second input _ From first
item input item

100 50 300 200

Takeaway: DAG had to wait longer than chain!

56

Inter-processing Delay

® The maximum time that can pass between two of

an operator’s consecutive outputs.

57

Inter-processing Delay

® The maximum time that can pass between two of

an operator’s consecutive outputs.

58

Inter-processing Delay

® The maximum time that can pass between two of

an operator’s consecutive outputs.

o O B o B o
100 50 300 200

59

Inter-processing Delay

® The maximum time that can pass between two of

an operator’s consecutive outputs.

H o ol O, B o

100 50 300 200

60

Inter-processing Delay

® The maximum time that can pass between two of

an operator’s consecutive outputs.

IPD: . 01 @ 02 . 03
450

100 50 300 200

61

Inter-processing Delay

® The maximum time that can pass between two of

an operator’s consecutive outputs.

|
IPD: . 01 @ 02 . 03 O
450

4

100 50 300 200

Key idea: use inter-processing delay term to
generalize our linear chain bound to DAGs

62

n

Evaluation

Evaluation: HoloHub Graph Structures

AP

Endoscopy Depth Endoscopy Depth Body Pose Colonoscopy
Estimation (CLAHE) Estimation Estimation Segmentation
E G H

A

Endoscopy Out of Orsi Multi Al and AR MultiAl Endoscopy MultiAl Ultrasound
Body Detection

64

Evaluation: Bounds vs Sim and Profiled

—go00{ * A e E
° B " F ¥
é 70001 . C s G . ;,
& Y
E 6o00{ = D H ¢
@) *
= 5000 rr
X**)5*,
S 40004 x K
) A
O e
.= 3000 -
D <
< 2000 1 A
o ',0
1000 -

1000 2000 3000 4000 5000 6000 7000 8000

Simulated WCRT (ms)

® Compare theoretical

WCRT to simulated and
real executions
Pessimism: The IPD we
calculate may not be

possible in practice

Takeaway: Closely bound most graph variations

65

o

Conclusion

What's wrong with profiling?

® Profiling to learn timing properties has many issues

o The response time bound may be unsafe
o Application development must be finished

o Profiling can be costly in time and compute

67

What's wrong with profiling?

® Profiling to learn timing properties has many issues
o Fheresponse-time-bound-may-be-tnsafe
o Application development must be finished

o Profiling can be costly in time and compute

68

What's wrong with profiling?

® Profiling to learn timing properties has many issues
o Fheresponse-timeboundmaybeunsafe
o Application-devel | be fnished

o Profiling can be costly in time and compute

69

What's wrong with profiling?

® Profiling to learn timing properties has many issues
o Fheresponse-timebound-maybetnsafe
o Application-devel | be fnished
o Prefili I it I '

70

Takeaways

® First safe response-time bound for NVIDIA Holoscan

® |s applicable to arbitrary DAGs
o Scalability experiments in paper
® Can help developers account for timing anomalies!

o Observe directly how change in execution time corresponds

to increase or decrease in response time

71

Future Research Areas

® Relax fixed execution time assumption

® Extend to core-constrained setting

® Fine-grained GPU-aware execution time analysis
® |ndependent applications running in parallel

® Transferring RTA results across different hardware

72

https://github.com/nvidia-holoscan/holohub/pull/600
Takeaways

® First safe response-time bound for NVIDIA Holoscan

® |s applicable to arbitrary DAGs
o Scalability experiments in paper
® Can help developers account for timing anomalies!

o Observe directly how change in execution time corresponds

to increase or decrease in response time

e Available on NVIDIA HoloHub repository

73

UBC Systems Lab is Looking
for New Students!

https://systopia.cs.ubc.ca

)\

Vs

74

Takeaways

® First safe response-time bound for NVIDIA Holoscan

https://github.com/nvidia-holoscan/holohub/pull/600

Thank you for listening! Questions?

® |[s applicable to arbitrary DAGs

o Scalability experiments in paper

® Can help developers account for timing anomalies!

o Observe directly how change in execution time corresponds

to increase or decrease in response time

e Available on NVIDIA HoloHub repository

75

