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Science talks about very simple things, and asks hard questions about them.
As soon as things become too complex, science can’t deal with them. . . And it
rarely reaches human affairs. Human affairs are way too complicated. . . So
the actual sciences tell us virtually nothing about human affairs.

Noam Chomsky
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TOWARDS A CENTRALIZED MULTICORE AUTOMOTIVE

SYSTEM

SOHAM SINHA
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Major Professor: Richard West, Professor of Computer Science

ABSTRACT

Today’s automotive systems are inundated with embedded electronics to host chassis, pow-

ertrain, infotainment, advanced driver assistance systems, and other modern vehicle func-

tions. As many as 100 embedded microcontrollers execute hundreds of millions of lines

of code in a single vehicle. To control the increasing complexity in vehicle electron-

ics and services, automakers are planning to consolidate different on-board automotive

functions as software tasks on centralized multicore hardware platforms. However, these

vehicle software services have different and contrasting timing, safety, and security re-

quirements. Existing vehicle operating systems are ill-equipped to provide all the required

service guarantees on a single machine. A centralized automotive system aims to tackle

this by assigning software tasks to multiple criticality domains or levels according to their

consequences of failures, or international safety standards like ISO 26262. This research

investigates several emerging challenges in time-critical systems for a centralized multi-

core automotive platform and proposes a novel vehicle operating system framework to

address them.

This thesis first introduces an integrated vehicle management system (VMS), called

DriveOSTM, for a PC-class multicore hardware platform. Its separation kernel design en-

ables temporal and spatial isolation among critical and non-critical vehicle services in

vi



different domains on the same machine. Time- and safety-critical vehicle functions are

implemented in a sandboxed Real-time Operating System (OS) domain, and non-critical

software is developed in a sandboxed general-purpose OS (e.g., Linux, Android) domain.

To leverage the advantages of model-driven vehicle function development, DriveOS pro-

vides a multi-domain application framework in Simulink. This thesis also presents a real-

time task pipeline scheduling algorithm in multiprocessors for communication between

connected vehicle services with end-to-end guarantees. The benefits and performance

of the overall automotive system framework are demonstrated with hardware-in-the-loop

testing using real-world applications, car datasets and simulated benchmarks, and with an

early-stage deployment in a production-grade luxury electric vehicle.
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Chapter 1

Introduction

The role of electronics and software in modern cars has rapidly grown over the last couple

of decades. Electronic components now contribute more than 40% of a vehicle’s total cost,

almost doubled since 2007 [Del19]. Vehicle control functions like chassis, body, power-

train are collectively controlled by nearly 100 embedded microcontrollers [Fle01, MV13,

Win19], also known as Electronic Control Units (ECUs), with hundreds of millions of

lines of code [BDDK18] in a single vehicle. Each ECU has its own control logic that is

costly and inflexible to upgrade, cumbersome to maintain and limited to feature exten-

sions [OTNK18]. Short of reflashing or adding new ECUs, it is difficult, if not impossible,

to fix or update the capabilities of a vehicle already in use, resulting in an ever-increasing

number of car recalls [Ahs13, MPM+19, Sto20].

The number of ECUs in a single vehicle is expected to rise as electronics play an

increasing role in support of advanced features such as automated driving, cloud con-

nectivity, electrification and “virtual cockpit” [CKK+18, HBGR17]. In the current auto-

motive systems, the ECUs are physically interconnected in a vehicle network such as a

Controller Area Network (CAN) bus. As emerging vehicle functions add more ECUs,

physical network connections and software code, automakers are facing a challenge of un-

precedented scale and complexity in the automotive systems [Cha21]. The hardware costs,

wiring, packaging and maintenance have become increasingly prohibitive [BDS19]. The
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existing vehicle networks are also not suitable to handle the large scale data communica-

tion required in new functions such as autonomous driving [Flo21, MSS+18]. Moreover,

simple ECU hardware lacks modern-day computing security guarantees [KCR+10, CS16,

ERSS+20], and functional errors are hard to detect and fix in a complicated vehicle net-

work [EJ09, EKI17].

An alternative approach to using large numbers of separate ECUs is to develop a cen-

tralized vehicle management system (VMS) [SCB+13, BDDK18, Del20, BSPL21] where

ECU functions are consolidated as software tasks on a single multicore machine [DNSV10].

Software is more easily upgraded, replaced and extended, without the cost and complexity

of added electronics, on a centralized computing platform [Int20]. Instead of long and

intertwined vehicular network, simpler networks connect sensors and actuators with sim-

ple transreceivers to the central computer, which hosts an appropriate I/O bus interface.

Commodity-class multicore hardware are also cheaper than specialized microcontrollers

to curb the growing cost of electronics. However, software tasks must now implement

ECU functions with different timing, safety and security requirements on a centralized

hardware. For example, a powertrain control task may have a stricter timing requirement

than an in-vehicle infotainment software. Timing and functional verification of the ECU

software also needs to be revised for multicore machines [UOO15, BMC+17]. Further-

more, an ECU task should be capable of communicating with another ECU task within

predictable time bounds like in a physical connection. These software guarantees are espe-

cially difficult to accomplish in commodity-class multicore platforms [DAN+13, KKR13,

WHKA13, YMWP14, YWZC16, MRR+19].

1.1 Problem Statement

Replacing ECUs with multiple software-defined functions requires first and foremost
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a suitable operating system. While Linux is used by automotive companies such as

Tesla [Tes22], BMW [Lin19], and Toyota [Den17], for its infotainment services, it lacks

the necessary timing and safety requirements for correct vehicle operations in all con-

ditions. Real-time components must be executed according to strict timing guarantees.

Safety-critical software components must be isolated from less-critical services, accord-

ing to different safety integrity standards such as ISO 26262-3 [ISO11]. General purpose

operating systems (GPOSes) such as Linux and Android are insufficient on their own

to provide the necessary spatial separation of highly critical services, with high conse-

quences of failure, from those of low-criticality ones [Ves07]. Similarly, these OSes lack

the real-time capabilities, including time-critical sensor and actuator I/O operations, nec-

essary to meet predictable service guarantees [RMF19]. Without significant modifications

and subsequent formal method verification, Linux’s use in automotive systems is limited

to non-critical functions.

Conversely, real-time operating systems (RTOSes) [DLW11, Fre22a, Win22a, eCo22]

are capable of providing timing guarantees to the applications, but have limited support

of pre-existing libraries, device drivers, services and applications. New vehicle functions

such as advanced driver assistance system (ADAS) and In-vehicle Infotainment (IVI),

require cutting-edge machine learning (ML), graphics and other libraries which are only

available in GPOSes like Linux, Windows and Mac OS. Hence, an RTOS in and itself is

not capable of providing all the functions of a VMS. Thus, an integrated vehicle operating

system must have both the benefits of a GPOS and an RTOS to support time-critical and

non-critical automotive services on a centralized platform.

A significant challenge in integrating vehicle ECU functions in a centralized VMS

is how to develop, deploy and support communication between mixed-criticality tasks,

spanning different operating systems, or domains. To date, most vehicle functions such
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as heating, ventilation and air conditioning (HVAC) or powertrain control are developed

for simple, single-core ECUs in model-based design languages such as Simulink and Lab-

View [Fri06]. These ECUs host a single, simple RTOS or firmware. Engineers accustomed

to model-based languages develop functions for these ECUs without awareness of control

flow (e.g., threads), data structures, and low-level communication primitives. Model-based

design languages have thus far lacked support for multi-OS domain systems, leaving the

burden on expert programmers to port ECU functions.

Moreover, ECUs in a vehicle are often interconnected in a serial pipeline or chain to

coordinate over a physical control network [DZDN+07, MN15, BDM+16b]. Similarly,

in a centralized VMS, software tasks are connected by data buffers in task pipelines or

task chains or “cause-effect” chains [SE16,HDK+17,KBS18,KBS20,CKK20,GCU+21].

The end-to-end properties of a task pipeline like the maximum reaction time of a task

chain [DBCC19], are important to establish the worst-case bounds for safety require-

ments or Quality-of-service guarantees of an automotive system. For example, Rimac

Automobili’s torque vectoring control has a 10ms worst-case end-to-end latency require-

ment [RIM16]. However, finding schedulable task runtimes and periods to satisfy the

end-to-end properties of a task pipeline is an integer non-linear constraint programming

problem that is NP-hard [DZDN+07]. Traditional mixed-integer non-linear programming

(MINLP) solvers [BHMH18, BHH+21] are too slow to derive the timing properties of

the pipelined tasks and not a feasible OS-level solution. Furthermore, scheduling a set of

pipelined tasks under the constraints is not yet addressed in a multiprocessor system.

1.2 Thesis Claims

This thesis makes the following claims:

1. A centralized multicore automotive system based on a separation kernel enables the
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legacy and library-dependent vehicle software to gain real-time capabilities, and also

empowers the domain-specific, real-time applications to leverage the advantages of

pre-exisiting libraries, device drivers and services.

2. The timing requirements of co-running critical and non-critical vehicle services are

satisfied, when they are temporally and spatially isolated in multiple domains of a

centralized multicore automotive system which communicates with a vehicle CAN

bus network.

3. If a multi-domain Simulink model of a vehicle ECU function is ported as a multi-

threaded software application in a timing-predictable multicore automotive system,

the end-to-end delay of the function model is guaranteed to be under the theoretical

upper bounds without compromising on any functional specifications.

4. A schedulable set of task runtime budgets and periods which meets the end-to-end

constraints of a connected pipeline of ECU software threads, is derived by a heuristic

constraint solver faster than the traditional MINLP solvers.

Chapter 3 presents experimental evidences for Claim 1 and 2. Claim 3 is proved by

empirical results in Chapter 4. Chapter 5 corroborates Claim 4.

1.2.1 Thesis Statement

This thesis empirically proves that connected vehicle ECU functions, integrated as mul-

tiple software threads into a centralized multicore automotive operating system, achieve

predictable end-to-end properties when they communicate with a vehicle CAN bus net-

work using real-world and simulated datasets.
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1.3 Research Contributions

This thesis introduces the DriveOS integrated vehicle management system (VMS) that

securely and predictably consolidates software-defined ECU functions on a centralized

platform. It supports the co-existence of an RTOS and a legacy OS such as Linux or

Android on a DX1100 multicore Workstation [Cin22]. DriveOS is based on a real-time

separation kernel [Rus81, WLMD16] which maps guest OSes to secure sandbox domains

that have direct access to partitioned machine physical resources. Timing-sensitive ser-

vices are deployed as real-time tasks in a sandboxed RTOS domain running our in-house

Quest RTOS [DLW11, Wes22]. Non-critical, legacy and library-dependent software such

as Instrument Cluster (IC), IVI and machine learning-based ADAS services are deployed

in Linux and Android sandboxes. We have designed and implemented a low-overhead and

secure inter-sandbox communication mechanism, named shmcomm, which allows both

synchronous and asynchronous message-passing between sandbox domains in DriveOS.

DriveOS is currently deployed in a production-grade luxury electric vehicle with various

applications integrated using our design and interfaces. Experimental evidences with real-

world applications and datasets show that DriveOS has predictable end-to-end latency for

integrated real-time and legacy software.

We present a multi-domain application development framework in Simulink, named

ModelMap, for model-based automotive functions in DriveOS. For engineers familiar

with the model-driven vehicle function design paradigm, ModelMap supports binding a

real-time periodic thread to a Simulink control task for timing-predictable execution. It

provides synchronous and asynchronous inter-task communication primitives, and real-

time I/O for commonly used protocols such as CAN bus. Vehicle functions that span OS

domains are encapsulated as nested binaries, which support the deployment of executable

code for multiple application binary interfaces. To the best of our knowledge, ModelMap
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is the first open model-based multi-domain VMS application framework. As a case study,

an HVAC control Simulink model is integrated in DriveOS as a real-time software thread

using ModelMap and shown to have the same functional outputs as its MIL execution.

This thesis also proposes a heuristic constraint solver algorithm for ECU software task

pipelines, so that the end-to-end guarantees of task chains are satisfied. Our heuristic algo-

rithm, CoPi derives timing properties of a pipeline of periodic tasks against the maximum

end-to-end delay and loss-rate constraints under a fixed-priority task scheduling algorithm.

CoPi is demonstrated in uniprocessor and partitioned multiprocessor scheduling with sim-

ulated tasksets.

In summary, this thesis presents the design, policies and mechanism of a vehicle op-

erating system framework which addresses some emerging challenges of a centralized

automotive platform and demonstrates their advantages with real-world applications and

experiments.

1.4 Thesis Organization

The thesis is organized as follows. In the next chapter, we discuss the related work to

different pieces of this research and the background of our work. Chapter 3 describes

the design and implementation of DriveOS. Chapter 4 presents the ModelMap applica-

tion framework for model-based vehicle functions in DriveOS. Chapter 5 covers the CoPi

heuristic constraint solver algorithm for end-to-end scheduling of real-time task pipelines

and demonstrates its benefits. Finally, the thesis conclusions and potential future work are

discussed in Chapter 6.



Chapter 2

Background and Related Work

This chapter provides an overview of the background and related work on centralized

automotive systems. First, we present an overview of the automotive systems software

design and implementation in Section 2.1. Then, we discuss the previous research on

real-time task pipeline scheduling Section 2.2.

2.1 Automotive System Software

A number of automakers are now developing OSes for their vehicles. Tesla uses its own

version of Linux [Tes22] for its display devices. Toyota’s Entune [Den17] for multimedia

and telematics is based on Automotive Grade Linux (AGL) [The21]. BMW’s driving and

infotainment system OS7 is built on Yocto Linux [Lin19]. Volvo’s Polestar has adopted a

bare-metal Android Automotive OS [Goo21a]. COVESA (formerly, GENIVI) [COV22]

and other alliances between automotive companies are also developing AUTOSAR-

[AUT22] and AGL-compliant OSes for modern vehicles. There have been many other

attempts to use Linux in time- and safety-critical scenarios [Y+99,Win22b,DM03]. While

Linux and Android provide a rich set of features, they lack real-time capabilities needed

for critical tasks in modern vehicle management systems. DriveOS uses a PREEMPT RT-

patched Linux [RMF19] and executes time-critical tasks in an RTOS domain, while en-

suring complementary Linux services are sufficiently predictable for use in automotive
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applications such as IC, IVI and ADAS.

QNX is a real-time microkernel [Hil92, vdVD04] used by Ford’s SYNC infotainment

system [For21] and NVIDIA DRIVE OS [Nvi22a]. It runs in millions of vehicles [Bla21].

QNX hypervisor supports real-time tasks in its QNX Neutrino RTOS, and other tasks in a

Linux virtualized guest OS. The microkernel handles inter-process communication (IPC),

process scheduling and interrupts. In comparison, DriveOS delegates process scheduling

and interrupt handling to individual sandboxes. Only the shmcomm module in DriveOS

hypervisor manages the IPC between applications in different sandboxes. In contrast to

QNX’s proprietary architecture, the design and implementation of DriveOS are openly

available [SW21].

Large automotive companies like General Motors and Mercedes, are developing their

own next-generation vehicle management systems that will control critical and non-critical

vehicle functions in a centralized platform [Gen22,Mer22,Ape22,Ope22]. They are plan-

ning to utilize some features of Linux, but the system designs are not publicly available.

Their planned deployments of these new systems are still a few years away [Mer22].

On the other hand, Quest-V has demonstrated the timing-predictable usage of different

Linux distributions like Ubuntu and Yocto Linux in time-critical contexts over the last few

years [WLMD16, YCSW18], including in an interactive Android-based automotive sys-

tem [SGEW20a, SGEW20b]. DriveOS hypervisor is based on the Quest-V [WLMD16]

separation kernel [Rus81] that acts like a partitioning hypervisor. Next, we discuss the

related works on partitioning hypervisors and the advantages of Quest-V over others.

2.1.1 Partitioning Hypervisors

Quest-V [WLMD16] is a separation kernel that statically partitions hardware resources

among multiple guest sandboxes. Each sandbox is responsible for task scheduling and
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device handling without the involvement of the Quest-V hypervisor. The Quest RTOS

[DLW11, Wes22] bootstraps Quest-V and initializes other sandboxes. Other partitioning

hypervisors like Jailhouse [RKLM17] and ACRN [LXRD19] rely on Linux to bootstrap

the system. Bao adopts a clean-slate partitioning hypervisor implementation for ARM

and RISC-V architectures, without relying on Linux [MTS+20]. Using Linux to bootstrap

guests in Jailhouse and ACRN increases the security attack surface of the partitioning

hypervisor. In addition, ACRN’s Linux-based service OS manages the hardware resources

for other safety-critical sandboxes, unlike Quest-V’s policy of directly assigning devices

to guest sandboxes. PikeOS [KW07] and Muen [BR13] separation kernels also do not

support independent interrupt handling by the guest sandboxes.

Inspired by Quest-V, DriveOS is bootstrapped by the relatively small Quest system,

with less than 4KB of its codebase remaining within the hypervisor (“ring -1” in x86 ter-

minology) privilege level. This eases the path to verification and certification by regulatory

authorities. As the hypervisor occupies the most privileged protection domain, and it is

not required for runtime resource management decisions by its guests, it is removed for

regular control-flow operations. This heightens the security of the system.

Although Quest-V supports communication between sandboxes [LWCM14], it uses

Inter-processor Interrupts for such communications. This reduces the available CPU uti-

lization of the guest sandbox as an interrupt handling thread needs to be dedicated to com-

munication requests. In contrast, DriveOS entirely relies on EPT hardware virtualization

in x86 for predictable inter-sandbox communication and provides a POSIX file I/O-like

API in Quest and Linux. Unlike Jailhouse and ACRN, DriveOS shows the utility of a

partitioning hypervisor in the context of a vehicle management system, where most car-

makers are using flavors of Linux. DriveOS also demonstrates the benefits of integrating

a real-time virtual CAN interface in Linux for automotive systems.
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2.1.2 Autonomous Driving Infrastructure

Recent years have seen numerous efforts to support autonomous driving. Autoware is

a self-driving infrastructure for NVIDIA DRIVE PX2 [Nvi22b], which provides machine

learning frameworks for object detection, and path planning [KTM+18]. Apollo is another

such infrastructure project by Baidu [Apo21]. OpenPilot is an open-source adaptive cruise

controller [com20], challenging Tesla’s Autopilot and FSD (Full Self-Driving) [Tes21].

There are plenty of other self-driving start-up companies working on various automotive

platforms [Way22, Zoo22, Gho22, Nur22, Arg22, Cru22, Gee22]. Most of these projects

heavily rely on flavors of Linux and are not focusing on building a full-scale automotive

software system. Their approaches are complementary to DriveOS. DriveOS is capable of

incorporating third-party applications; it already integrates the IC and IVI applications of

our partner software company, as well as OpenPilot.

2.1.3 Model-based Software Development

MATLAB/Simulink is the de-facto design tool for model-based vehicle control soft-

ware [Fri06]. Proprietary functional blocks are commonly provided by vendors for use

on their own ECUs, which traditionally feature single-core microcontrollers. However,

the growing popularity of embedded multicore processors has led to the development of

task-parallel Simulink models. Pagetti et al. have done extensive work on multi-periodic

Simulink models for multicore platforms based on the ROSACE architecture for avion-

ics [PSG+14,PFF+18,BGL+20]. They employ formal verification techniques from design

to code generation, to meet avionics standards. However, the multicore CPU model and

verified code generation are hard to obtain, and they rely on faithful code translation from

other high-level formally defined design languages like Lustre. This research focuses on

multi-domain code generation using Simulink tools for DriveOS.
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Formal verification has been applied on Simulink to C code generation [BKÁ+18], and

Simulink models are being used in production by automotive companies [Fri06]. Despite

design-level verification of Simulink models [dBR06, CCM+03, MBR06, RG14, FPZ15,

FPZ15], little has been done on multi-domain code generation, deployment and end-to-end

testing, especially on a distributed system-on-chip [FUVC13] platform such as DriveOS.

Emerging multi-domain vehicle management systems [Mer22, Ape22, Ope22,

BSC+21] require redesigned control function development tools [SST07]. Although new

approaches are being considered [CRZC16,RBH+18], they mostly target ECU-based sys-

tems [CWAF14] with a single RTOS [eCo22, The22, Fre22a, Win22a]. In recent years,

MathWorks has presented Simulink Desktop Real-time [Mat22f] for real-time simula-

tion of models, but it is not a VMS solution. Simulink now also supports Linux and

VxWorks [Win22a] tasks, but without any periodic control mechanism [Mat22g]. Our

work on ModelMap presents a model-based application framework for multiple domains

in DriveOS.

2.2 Real-time Task Pipeline Scheduling

Real-time embedded and cyber-physical systems are amassed with examples of task

pipelines where a series of tasks are connected by data-buffers. In automotive do-

mains, a sensory input is passed on to a pipeline of processing and control tasks

that activate an actuation output [HDK+17]. Scheduling algorithms for such com-

municating tasks against end-to-end constraints have long been an active area of re-

search [GSS95, DZDN+07, XLXC14, ZDB+20].

Gerber et al. presented a generic framework that shows how constraint programming

helps in guaranteeing end-to-end constraints in a task graph [GSS95]. Davare et al. pre-

sented an end-to-end timing analysis of task pipelines and provided an upper bound on
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the end-to-end latency [DZDN+07]. This work is closely related to our work on CoPi for

end-to-end task pipeline scheduling, as it also proposes the problem of finding task periods

as an optimization problem under constraints, that is solved by Geometric Programming.

However, Davare et al. do not consider loss-rate as a constraint and focuses on latency.

In our work, we introduce loss-rate as one of the constraints and refine the optimization

problem for finding suitable task periods. In addition, we use an improved end-to-end

latency analysis by Dürr et al. [DBCC19]. Moreover, we have used latest open-source

MINLP solvers [BHMH18,BHH+21] for comparison, which were unavailable at the time

of Davare et al.’s work.

There are other research studies on task chains that explore the end-to-end timing anal-

ysis of task chains [BDM+17, KBS18, KBS20, GCU+21] in practical scenarios such as in

drones [CWE18], in ROS [CBLB19, TFG+20]. Proposed scheduling algorithms based on

these approaches rely on job release times [BDM+16a, CKK20].

For multiprocessors, Liu and Anderson have analyzed a global scheduling algorithm

for pipelined periodic tasks [LA09a, LA09b]. Mixed-criticality processing pipelines

are also being investigated [dNAK+17]. Nevertheless, they do not consider end-to-

end constraints. Finally, period selection is a widely studied problem in real-time sys-

tems [BC08, NF15, CJK16, XCÅ16], even though they are not targeted to real-time task

pipelines.



Chapter 3

DriveOS Vehicle Management System

Modern vehicles support 10s to 100s of millions of lines of code [BDDK18]. To counter

the growing complexity of software and electronics, chipmakers such as Intel, and ana-

lytics firms like McKinsey have called for a centralized vehicle management system to

reimagine modern cars from a hardware-driven mechanical machine to a software-driven

electronic device [BDS19,Int20]. A few carmakers have recently announced their plans to

develop a centralized vehicle operating system platform [Mer22, Ape22, Gen22]. Taking

inspiration from AUTOSAR’s requirements about future car operating systems [AUT22],

we envision a centralized system built on a low-cost, standardized industrial PC [Nie16].

PC-class hardware provides multiple high-performance processing cores, gigabytes of

memory, hardware virtualization, potential integration with time-triggered Ethernet or

Time-Sensitive Networking (TSN) [Cis17, KAGS05], and support for hardware acceler-

ators for use in machine learning, at a low cost. In comparison, ECUs typically feature

small flash memories and megahertz-speed microcontrollers, with limited processing ca-

pabilities for next-generation automobiles.

A centralized PC-class vehicle platform needs a suitable operating system. Towards

this goal, we introduce DriveOS [SW21], which securely co-hosts an RTOS with a legacy

system such as Linux using a partitioning hypervisor. Each guest OS domain manages

its own CPU cores, physical memory and I/O devices without runtime involvement of
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a virtual machine monitor. DriveOS is bootstrapped by our own in-house real-time OS,

Quest [DLW11, ?, Wes22], which establishes secure communication channels with other

guest domains running Linux and/or Android. First-class shared memory channels be-

tween co-hosted guest OSes provide real-time, low-latency, high bandwidth, and secure

inter-sandbox communication. This enables a mutually beneficial symbiosis between the

RTOS and each legacy system: legacy systems inherit real-time capabilities without modi-

fication, while the RTOS gains access to pre-existing libraries, device drivers, and services.

Unlike GPOSes, DriveOS supports real-time and predictable I/O, similar to what is

available in typical microcontrollers. One or more USB-CAN interfaces [Kva22] connect

a DriveOS central computer, acting as a CAN concentrator, to a network of sensors and

actuators. A real-time USB 3.0 protocol ensures predictable data movement between the

DriveOS host and peripheral devices connected to each CAN bus [GCW18].

Figure 3.1 shows a high-level overview of DriveOS on a DX1100 Workstation [Cin22].

This is an industrial PC-class computing platform, being tested within our partner electric

car company, Drako Motors for integrated vehicle management. Although DriveOS sup-

ports multiple guests such as Ubuntu and Android, we use Yocto Linux in this work. Our

Yocto Linux sandbox features: (1) an IC application that displays a graphical speedometer,

battery meter and other indicator readings, (2) an IVI application that provides HVAC con-

trols, navigation, and smartphone integration, and (3) ADAS services for adaptive cruise

control and autonomous driving. The Quest sandbox implements a real-time CAN gate-

way service to facilitate sensor data processing, control, and secure communication with

separate IC, IVI, and ADAS services. Real-time service tasks such as an ADAS longitudi-

nal controller are also executed in Quest.

In this chapter, we: (1) describe the separation kernel that forms the basis of DriveOS,

(2) introduce a low-overhead and secure inter-sandbox communication framework, named
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Figure 3.1: Integrated Vehicle Management in
DriveOS

Figure 3.2: Resource Partitioning in DriveOS

shmcomm, which allows both synchronous and asynchronous message-passing between

guest sandboxes, and (3) integrate IC, IVI and ADAS services in DriveOS to show the

feasibility of our approach.

We compare an implementation of DriveOS, which is actively being developed for

a production-grade electric car, with an alternative Linux system that is currently used

in the automotive industry. Using a hardware-in-the-loop (HIL) CARLA driving simula-

tion [DRC+17], and real car dataset collected from Laguna Seca raceway in California,

we show that an optimized Linux supporting real-time tasks is unable to achieve the end-

to-end delay and throughput guarantees provided by DriveOS, when tasks process and

exchange data with a CAN bus network. At the same time, DriveOS provides the added

security and isolation between software components of different criticality levels.

The next section provides a detailed description of the DriveOS design. Section 3.2
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outlines the implementation of the DriveOS partitioning hypervisor, used to support se-

cure and predictable separation of different application and kernel components. The inter-

sandbox communication framework is then explained in Section 3.3, followed by a de-

scription of the DriveOS applications in Section 3.4. The chapter concludes with a system

evaluation in Section 3.5.

3.1 DriveOS Design

DriveOS uses Linux as the basis for next-generation IC, IVI applications and ADAS user-

interface control, with real-time features handled by our Quest RTOS. For example, an

ADAS torque vectoring and traction control service configured for use on wet, dry, or

snow-covered roads, must manage updates to wheel torques within specific time bounds

to prevent the vehicle skidding out of control. While we want real-time control to be

handled by suitably predictable real-time services, the interface to configure ADAS set-

tings will be exposed to Linux. DriveOS hosts both Linux and Quest on a single machine,

supporting communication between both guest OSes via secure shared memory channels.

Thus, Linux is empowered with real-time capabilities afforded by Quest, and Quest is em-

powered with improved user-interactivity capabilities (including graphics and touchscreen

control) provided by Yocto Linux. We now describe the design of our system in further

detail, beginning with the partitioning hypervisor.

3.1.1 DriveOS Partitioning Hypervisor

Figure 3.2 shows a diagram of the DriveOS partitioning hypervisor, configured for a vehi-

cle management system. DriveOS is implemented for the x86 architecture and statically

partitions the hardware resources of a physical platform amongst each guest OS. This

resource assignment makes use of hardware-assisted virtualization techniques to isolate
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guest operating systems in distinct sandboxes.

At boot-time, DriveOS begins by executing Quest as though it were a standalone sys-

tem. Quest contains the hypervisor logic to partition hardware resources among separate

guest sandboxes, according to a boot-time configuration. One instance of Quest is repli-

cated in non-overlapping physical memory for each guest sandbox, and then each guest is

launched. Depending on the DriveOS configuration, one instance of Quest will act as a

bootloader for Linux or Android, which becomes the active OS in the corresponding sand-

box. For a system with at least two sandboxes, it is then possible to have Quest running

in a guest domain that is isolated from another running an OS such as Linux. As Quest

contains the hypervisor, or virtual machine monitor (VMM) code, to bootstrap a series of

guests, each sandbox subsequently contains independent “root mode” (also called “ring

-1”) hypervisor code. This is a heightened privilege level address space over traditional

kernel protection domains that run at “ring 0” on x86 systems. Similarly, each guest ac-

tively runs in “non-root mode” but is granted direct access to hardware resources that it

can access without invoking the VMM.

Each guest’s VMM code is only needed to execute a minimal set of privileged machine

instructions that cause VMExits (from guest to hypervisor control-flow), and to establish

new inter-sandbox shared memory channels between guests. The number of guest sand-

boxes and the mapping of hardware resources (CPU cores, physical memory ranges, and

subsets of I/O devices) to guests is established by static system configuration informa-

tion. As resources are partitioned rather than shared as in traditional hypervisors such as

Xen [BDF+03], there is no duplication of potentially conflicting resource management

policies between a guest OS and hypervisor. The lack of runtime resource management

functionality in the DriveOS hypervisor means that ring -1 code has a text size of less than

4KB.
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Each guest kernel in DriveOS operates in (non-root) ring 0. With the exception of

Quest, all other guest OSes are paravirtualized to operate correctly within their virtualized

domains. We have paravirtualized Yocto Linux, Ubuntu, and Android for DriveOS with

less than 150 lines of code changes in the Linux kernel. These changes are mostly to

handle direct memory access (DMA) requests, where guest and machine physical memory

addresses differ, and the processor does not provide IO address translation capabilities

(e.g., IOMMU support such as VT-d on certain Intel x86 processors). For the purpose of

this work, we use only the Yocto Linux distribution for guests that complement Quest.

In this work, DriveOS hosts Quest and Linux on two separate cores in a DX1100

machine [Cin22]. USB, USB-CAN and serial ports are exclusively allocated to Quest,

and the remaining I/O devices are allocated to Linux. For Linux to receive information

via USB, it must communicate with Quest through an explicit shared memory channel.

Details of the inter-sandbox communication mechanism are provided in Section 3.3.

3.1.2 Real-time Task as a Service

DriveOS temporally and spatially isolates Quest and Linux in the same physical machine.

This means a guest kernel is unable to interfere with the runtime progress or memory

state of another guest. Quest schedules its tasks with its own real-time scheduling policy,

independent of the co-existent Linux guest. In DriveOS design, Quest provides real-time

task services to other sandboxes via inter-sandbox communication channels. Applications

in other sandboxes subscribe to a real-time service via a specific channel. For example, a

feed-forward PI controller for a car’s adaptive cruise control is implemented in DriveOS as

a real-time service in Quest. Linux-based ADAS functions use the real-time PI controller

service via a synchronous shared-memory channel.

A real-time service task has the following properties: maximum runtime (C), frequency
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of execution (or period T), and a number of communication channels. Quest schedules the

real-time tasks with the rate-monotonic scheduling (RMS) algorithm [LL73]. The service

task is given at least C time-units in every T time-units.

In addition, critical I/O tasks are also implemented in Quest as real-time service tasks.

For different classes of I/O devices and I/O-waiting threads, unique C and T values are

computed at runtime to handle interrupts at the correct priority. This is covered further

in Section 3.2.1. Other sandboxes use this type of critical I/O device-handling task to

implement a real-time virtual device interface. For example, DriveOS has a real-time

CAN Gateway Service to handle USB-CAN devices in a fast and predictable way. In the

future, we plan to consolidate dozens of car ECUs into real-time services in multiple Quest

sandboxes and make them available to applications in other sandboxes.

3.1.3 Advantages of the DriveOS Design

The DriveOS architecture brings unique advantages in vehicle management, which are

crucial to building a secure, predictable and extensible automotive system.

3.1.3.1 Real-time Task and I/O Services for Linux

In spite of being a non real-time OS, Linux is able to leverage the real-time capabilities of

Quest to interface with the timing critical components of a vehicle. I/O data is exchanged

with Linux applications without the need to use traditional socket-based interfaces such

as Ethernet. Moreover, SCHED DEADLINE scheduling of Linux enables data exchanges

with Quest to perform in a sufficiently predictable way. This approach removes interfer-

ence from device interrupts that are managed in real-time by Quest.



21

3.1.3.2 Isolated I/O for Timing Sensitive Devices

The USB-CAN interface is timing and safety-critical in automotive systems. The injection

of a malicious packet onto the CAN bus has potentially devastating effects [KCR+10,

Lev22], dictating the need for secure access to this network. Although malicious packet

insertions must be prevented, the vehicle management system must still be able to read

from and write to this bus network to receive data and control the components of a vehicle

such as the HVAC unit, and engine controller.

The isolated sandboxes in DriveOS prevent unauthorized access to critical I/O devices

by guests such as Linux. In our vehicle management system, the USB-CAN device is

assigned to Quest and is inaccessible to Linux. CAN data is accessible to Linux only via

secure shared memory channels from Quest. Quest additionally filters requests to ensure

any malfunction or vulnerability in Linux will be contained within its sandbox.

3.1.3.3 Separation of Criticality Domains

Standards such as ISO 26262-3 [ISO11] define multiple automotive software integrity

levels (ASIL-A to D). Our approach enables services of different criticality, or integrity,

levels to be assigned to different sandboxed domains. These sandboxes are spatially and

temporally isolated as envisioned by partitioning systems for future vehicles [LSOH07].

Because of the relatively small RTOS codebase, DriveOS is amenable to formal verifica-

tion to ensure functional and timing correctness [GSC+16, LRS+19].

3.1.3.4 Flexibility in Automotive Software Development

If Linux is used to interface directly with an automotive system’s critical functionality,

it ideally needs to be independently maintained by automotive manufacturers. However,

these manufacturers may not have the expertise to develop and maintain a large and com-
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plex codebase like Linux.

It is potentially easier for automotive engineers to develop and maintain a simpler

codebase such as Quest, which provides timing and safety-critical services to a vehicle.

Quest is able to consolidate the real-time functional requirements traditionally managed

by separate ECUs within different process address spaces. We have also started the de-

velopment of a set of toolbox functions for Matlab that is heavily used by the automotive

industry, to produce target code for Quest. These functions not only gain the benefits of

a real-time OS but are guaranteed isolation from a Linux address space, which is poten-

tially open to third-party, less secure software. Thus, it is beneficial for manufacturers to

develop in a separate OS in which they have the flexibility to apply their own safety and

security policies. The only Linux development that is needed is the inclusion of a Linux

kernel module to facilitate inter-sandbox communication to and from Quest.

Apart from the above advantages, DriveOS is extensible for an implementation of fault-

tolerant automotive software system [MWL14]. In addition, the potential single point

of failure of a single hardware platform is addressed by introducing backup hardware,

albeit with fewer replicas than ECUs found in current vehicles. Memory bit errors are

addressed by replicating software functions using techniques such as Triple-Modular Re-

dundancy [LV62], or N-versioning [Avi85]. Hypervisor-based fault tolerance ensures one

sandboxed guest is able to recover from failure [BS95]. These techniques serve to validate

our approach, but are not the main focus of this work.

3.2 DriveOS Implementation

As stated earlier, DriveOS uses Quest to bootstrap a series of sandboxed guests. Once

the first instance of Quest is loaded into memory, it replicates itself for each sandbox

that is specified in a static configuration. Hypervisor code extensions to standalone Quest
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enable each OS replica to be launched into non-root mode, using a VMLAUNCH machine

instruction. Depending on the system configuration, a guest may continue to run Quest or

may choose to bootstrap another OS such as Linux.

Each sandbox replicates the VMM logic to establish separate guest domains, but as

previously noted, this code is only required at runtime to handle instructions that cause

VMExits and to establish secure communication channels between guests. Secure commu-

nication channels require mappings of guest to machine physical memory using extended

page tables (EPTs). Although a VMM’s text segment that stores instructions fits within a

4KB page of memory, additional data space is needed for EPTs. For example, assuming a

4GB address space for a single guest requires 24KB memory for the corresponding EPT.

DriveOS currently uses Intel VT-x technology to allow a sandbox monitor to create one of

more virtual machine control structures (VMCSs) per sandbox. One VMCS is created for

each CPU core assigned to the sandbox, and stores guest and host state information, virtual

machine execution, exit and entry control information, as well as the causes of VMExits.

VMLAUNCH instructions refer to the active VMCS for the corresponding processor and

initialize the corresponding guest state. If the guest is to replace Quest with another OS,

configuration parameters required for paravirtualization are sent to the respective kernel at

boot time.

Memory Partitioning In the configuration parameters of DriveOS, a tuple containing

the base and limit of host physical memory (HPM) must be specified for every sandbox.

Each sandbox monitor relocates its guest in HPM according to the specified base address.

EPT entries grant guests exclusive access to specific memory regions, while safeguard-

ing the monitor logic. VMMs also manage the guest physical to host physical memory

mapping of shared memory regions for the inter-sandbox communication, as described in

Section 3.3.
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Device Partitioning Device partitioning is accomplished by interposing on ACPI con-

figuration and PCI bus enumeration, thereby ensuring VMExits into a guest’s correspond-

ing VMM to check whether the device is blacklisted or not. Each guest’s monitor will

block their guest’s access to a device or IRQ if they are not assigned to that guest. Identity-

mapped MMIO regions are used by guest kernels to manage their assigned I/O devices.

The Yocto Linux kernel has been paravirtualized to compensate for the HPM base

offset when a physical address is needed for DMA-enabled devices. This avoids imple-

menting VMM drivers to support IOMMU technologies, such as Intel’s VT-d, for those

devices. As the code size of each VMM is minimized, this helps enforce heightened secu-

rity and simplifies formal verification.

3.2.1 Real-time I/O in Quest RTOS

In Quest, every real-time task has a budget, C, determined by its worst-case execution

time, and a period, T . Quest implements a static priority rate-monotonic scheduling

(RMS) algorithm with a sporadic server, to guarantee a task or software thread receives

at least C amount of execution time every T . Using the RMS policy, Quest assigns the

highest priority level to the task with the smallest period.

Quest ensures that temporal guarantees of real-time tasks are not violated by interrupts

from I/O devices. Quest handles an I/O interrupt with a schedulable thread at its proper

priority level [ZW06, DLW11, Wes22]. In general, device interrupts are generated on be-

half of tasks issuing I/O requests. Thus, an interrupt must be handled at the same priority

level as the waiting task.

Each interrupt handler is divided into two parts: a top- and bottom-half. In Quest, the

top-half handler simply acknowledges an interrupt, and determines which task is waiting

for the I/O device. Quest then schedules the bottom-half handler as a separate thread at

the same priority level as the waiting task. As RMS determines a task’s priority by its
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period, T , the bottom-half handler (BH) thread is assigned the same period as the task it

serves. As with the Quest RTOS [DLW11,Wes22], the budget of the BH thread is derived

from the I/O device class and the waiting task’s period. Each device class has a utilization

percentage value, which is multiplied by the waiting task’s period, to derive the budget of

the BH thread. For example, the utilization percentage of USB-CAN devices in DriveOS

is 10%. If a task with a period of 1 ms waits for a USB-CAN read, then the USB-CAN

BH will receive 0.1 ms budget in every 1 ms to read messages from the device. All I/O

handling occurs in the context of the BH thread, not in the I/O-waiting task’s context. This

ensures BH processing is time-budgeted separately from task execution.

3.2.2 Paravirtualized Android Sandbox

An earlier version of DriveOS used Android in a guest sandbox [SGEW20a]. Despite An-

droid’s HAL, security and other layers, we patched Android with modifications of only

126 lines of Linux kernel code. The Android sandbox hosted third-party IC and IVI ap-

plications along with other default Android applications (apps) such as Google Chrome,

Contacts. Android apps accessed the real-time CAN I/O via the shared memory channels

with the Java Native Interface functions.

3.3 Inter-Sandbox Communication in DriveOS

A key component of DriveOS is the secure and predictable communication between differ-

ent guest domains. Address spaces in two different guests use the shmcomm inter-sandbox

communication mechanism to interact with each other. Inter-sandbox channels are used

to create communicating task pipelines [MMO+95, PIBM11]. Figure 3.3 shows the shm-

comm control- and data-flow in DriveOS.

A kernel (shmcomm) module mediates requests to map and unmap shmcomm commu-
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Figure 3.3: shmcomm Control and Data Flow in DriveOS

nication channels in an 8MB region shared between the guests. A kernel module within

each guest sends requests to the shmcomm manager in its local VMM to configure the

channels. The shmcomm manager does not expose the host physical addresses (HPAs)

of shmcomm channels to a guest. Instead, it establishes EPT mappings of guest physical

addresses (GPAs) to HPAs, for the memory pages used for communication channels. The

manager uses a secure Info Page to store all the metadata information of the channels in

DriveOS. The Info Page is not mapped to any guest kernels but is instead accessed via a

lock held by the VMMs of each sandbox.

Each VMM shmcomm manager resides in ring -1 in DriveOS, and requires less than

500 lines of code, thereby keeping the trusted codebase of the most privileged protection

domain small. In addition, the shmcomm manager handles four specific hypercalls to

service requests from guest kernels: (1) creating a channel, (2) connecting a channel, (3)

getting channel metadata, and (4) destroying a channel. User-level (ring 3) address spaces

cannot directly interact with the VMM, unless granted permission by guest kernels.

Once a channel is created by the shmcomm manager, applications in different sand-

boxes communicate without invoking system calls or VMExits. Applications use a POSIX
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I/O-like API provided by libshmcomm, to read from and write to these channels for

asynchronous and synchronous communication. The channel communication protocols

are entirely implemented in userspace. It is possible to extend the library with new com-

munication protocols without modifying the kernel modules or the VMM code. Code

Block 3.1 shows the APIs provided by libshmcomm.

int shmcomm_open_send (unsigned int vshm_key, unsigned int flags,
marshall_func_t marshall_function, size_t packet_size, int buffer_len);

int shmcomm_open_receive (unsigned int vshm_key, unsigned int flags,
unmarshall_func_t unmarshall_function, size_t packet_size, int
buffer_len);

int shmcomm_write (int fd, void* buf, size_t nbytes);

int shmcomm_read (int fd, void* buf, size_t nbytes);

unsigned int get_vshm_key (int fd);

channel_transfer_type_t get_channel_transfer_type (int fd);

int shmcomm_destroy (int fd);

int shmcomm_close (int fd);

Code Block 3.1: The libshmcomm Library APIs

3.3.1 shmcomm Operations

3.3.1.1 Creating and Connecting a Channel

Channels are created and connected for sending and receiving messages using

shmcomm open send and shmcomm open receive functions, respectively. A

unique channel key, vshm key, is used to create a channel between separate guest ad-

dress spaces. The flags argument supports the creation of a new channel (SHMCOMM

CREATE CH) or connection to an existing channel (SHMCOMM CONNECT CH). The

channel type, which is either synchronous (SHMCOMM SYNC CH) or asynchronous

(SHMCOMM ASYNC CH), is also specified in flags.

The shmcomm protocol supports marshalling and unmarshalling before sending and

after receiving messages, using specific callback functions. Data marshalling is provided

as a convenience because CAN messages often need to be encoded and decoded (e.g., us-

ing DBC files). Finally, the size of each message (or packet) and the length of the shared
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memory buffer are needed to create a channel. All this information, except the marshalling

callbacks, are sent to the shmcomm manager via a system call to the guest kernel and

a hypercall to the VMM. The shmcomm manager stores the channel information in the

secure Info Page. Connecting to an existing channel does not need any specific infor-

mation such as packet size or buffer len, as shmcomm supplies this information

to the applications from its Info Page. The shmcomm kernel module in a guest sandbox

sends a GPA to the shmcomm manager, which is mapped to a private channel HPA. Both

shmcomm open send and shmcomm open receive return an integer file descriptor

that is used to further interact with the channel.

3.3.1.2 Closing and Destroying a Channel

Closing a channel with shmcomm close frees the userspace data-structures for the chan-

nel. shmcomm destroy frees the channel memory from the shared memory region and

also removes the channel entry from the Info Page. shmcomm destroy implicitly closes

a channel.

3.3.1.3 Querying Channel Metadata

A channel’s vshm key and type of data-transfer (synchronous or asynchronous) are

queried using get vshm key and get channel transfer type, respectively. An

address space could query channel metadata before exchanging messages with a channel.

3.3.1.4 Reading from and Writing to a Channel

Reading from and writing to a channel occur entirely in guest userspace without any sys-

tem call or VMExit overheads. The channel memory is mapped to userspace in the local

(guest process) page table by the shmcomm kernel modules in Linux and Quest. This
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reduces communication overheads in DriveOS once channels are established. The shm-

comm interface uses a FIFO ring buffer for synchronous communication and Simpson’s

four-slot algorithm [Sim90] for wait-free asynchronous message passing. The latter is

useful when loss tolerant data transfers between guests are acceptable, as long as the most

recent data is exchanged (e.g., for sensor data).

3.3.1.5 Example

Code Block 3.2 shows the C code of a sender in Quest that creates a synchronous shm-

comm channel to send messages of struct packet type. The channel’s ID is 101

and ring buffer length is 10. Code Block 3.3 shows the receiver-side code in Linux, which

connects to channel ID=101 and reads from the channel into a local variable p rec.

struct packet {int X; int Y};

int write_fd = shmcomm_open_send(101,
SHMCOMM_CREATE_CH |
SHMCOMM_SYNC_CH, NULL,
sizeof(struct packet), 10);

struct packet p_snd = {.X = 10,
.Y = 20};

shmcomm_write(write_fd, &p_snd,
sizeof(struct packet));

shmcomm_close(write_fd);

Code Block 3.2: Sender in Quest

struct packet {int X; int Y};

int read_fd = shmcomm_open_receive(101,
SHMCOMM_CONNECT_CH, NULL,
sizeof(struct packet), 10);

struct packet p_rec;

shmcomm_read(read_fd, &p_rec,
sizeof(struct packet));

shmcomm_close(read_fd);

Code Block 3.3: Receiver in Linux

3.3.2 Real-time Virtual Device I/O for Linux

Communication pipelines created with our libshmcomm library extend real-time I/O in

Quest to address spaces in Linux. This enables Linux tasks to perform time-bounded func-

tions such as obstacle detection and avoidance (useful for ADAS), using real-time sensor

data processing and actuation tasks in Quest. Our communication APIs have bindings for

C, C++, Java and Python in Linux and Android. DriveOS grants permission for IC and IVI

tasks in C++, and OpenPilot ADAS tasks in C++ and Python, to interact with USB-CAN

I/O services in Quest.
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3.4 DriveOS Applications

In this section, we describe the integration of three applications in DriveOS: Instrument

Cluster, In-vehicle Infotainment and Advanced Driver Assistance System. We also ex-

plain how these applications utilize the Real-time Task as a Service model in DriveOS,

to guarantee end-to-end throughput and delay requirements for data processing. Since

these applications are tested in our hardware-in-the-loop (HIL) simulation infrastructure,

we first explain the HIL simulation setup to help describe the integration procedure. The

HIL setup is also used in Section 3.5 to evaluate DriveOS against standalone Linux.

3.4.1 Hardware-in-the-loop Experimental Infrastructure

DriveOS is prototyped and tested on a Cincoze DX1100 machine [Cin22], featuring an

Intel Coffee Lake i7-8700T processor. This is a low-power industrial PC-class machine

that is being used in an electric vehicle under development by our partner company. It has

ample processing capacity to support many traditional ECU functions as software threads.

Multiple I/O interfaces are capable of interfacing with different USB-CAN networks, and

three display ports serve different user interfaces. Table 3.1 lists the machine features.

Table 3.1: DX1100 Specifications

Processor Intel Coffee Lake i7-8700T (≤ 2.4GHz)
RAM 32 GB
eMMC Storage 64 GB
Display and UI HDMI, DVI and DisplayPort
CAN Connector 8 USB3.x ports
Serial I/O 4 RS-232 Serial ports
Network 2 GbE Ethernet ports (x2) and mPCIe-USB Bluetooth
Power 24V, 5A
Dimension 242 mm × 174 mm × 77 mm

Figure 3.4 shows the HIL setup and data-flow via our car’s computing hardware.

A Kvaser USBcan Pro 5x HS industrial USB-CAN adapter [Kva22] is attached to the
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DX1100. The CAN-Hi and CAN-Lo signals from the adapter are suitably terminated with

120Ω resistive loads. These signals feed into a USBcan Light 2x HS USB-CAN adapter

attached to an Ubuntu 16.04 Linux machine, which runs the CARLA [DRC+17] driving

simulator. The simulator feeds a CAN bus data trace of our partner company’s electric car

to test onboard IC and IVI application services. To test the ADAS services, the CARLA

simulator is updated via OpenPilot running in DriveOS. Before we deploy our system fully

on the road, it is necessary to rigorously test and study time-critical metrics using a HIL

simulation.

Figure 3.4: Hardware-in-the-loop Simulation Infrastructure for DriveOS

3.4.2 Instrument Cluster (IC) and In-vehicle Infotainment (IVI)

The IC and IVI are third-party Qt C++ applications being developed by a partner company,

with sample screenshots shown in Figure 3.1. The IC and IVI rely on sophisticated UI

libraries such as Qt, that are only supported for a selected few OSes. Therefore, it is not

feasible to implement these applications in an RTOS like Quest, even though they have

some critical timing requirements. DriveOS refactors these applications, so that timing-

critical components are ported to Quest and the remaining parts run in Linux.
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For IC and IVI, sending and receiving CAN messages needs to be fast and predictable.

Slow and unpredictable CAN messaging would mean inaccurate and discrepant data in

IC and IVI. DriveOS therefore features a CAN Gateway real-time service in Quest that

delivers CAN packets to the IC and IVI applications via shmcomm channels. An Infotain-

ment CAN Mapper is split between Quest (IMQ) and Linux (IML) to exchange data (see

Figure 3.4). In Linux, FIFO pipes are used to deliver messages between IC, IVI and In-

fotainment CAN Mapper threads. More details about the CAN Gateway real-time service

task are explained later in this section.

3.4.3 OpenPilot Advanced Driver Assistance Systems (ADAS)

DriveOS also incorporates an open-source ADAS, OpenPilot [com20], which is used daily

in thousands of cars on the road. OpenPilot is written in C++ and Python and originally

developed for Ubuntu and Android. It supports Adaptive Cruise Control, Automated Lane

Centering, Forward Collision and Lane Departure Warning. OpenPilot receives radar, gyro

and other sensor data via CAN. Live images are collected via local cameras, while sim-

ulated CARLA images are received over an Ethernet link managed by Linux. OpenPilot

then generates throttle, brake and steering control adjustments based on a Longitudinal PI

Controller, and machine-learning (ML)-based Object Detection and Path Planning algo-

rithms. It uses Tensorflow for ML algorithms, and Qt for a UI display.

After OpenPilot decides an intended path by processing an image stream with the Ob-

ject Detection and Path Planning algorithms, its Longitudinal Feed-forward PI Controller

is responsible for generating the final throttle and brake control values. Such a longitu-

dinal controller is central to an automotive system’s safety, and is susceptible to timing

violations. In general, the automotive industry expects an end-to-end (sensing-processing-

actuation) delay in the order of 10ms for such controllers [RIM16].

OpenPilot currently runs the longitudinal controller as a SCHED FIFO task and main-
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tains a 10ms rate via the Linux clock gettime API. Current OpenPilot implementa-

tions run on a dedicated Linux machine where no other applications are allowed to run,

and all tasks are hand-tuned to meet their timing requirements. As the automotive industry

moves towards an integrated and extensible vehicle management solution, arbitrary third-

party applications in Linux have the potential to interfere with the timing requirements of a

controller [AGK+02] such as the one in OpenPilot. Our experiments in Section 3.5 reveal

this issue.

In an effort to port OpenPilot to DriveOS, the Longitudinal Controller is implemented

in a Quest sandbox as a real-time service task. In addition, the CAN Gateway real-time ser-

vice task is also utilized by OpenPilot for radar data inputs and brake, throttle and steering

outputs. The rest of the OpenPilot module relies on Tensorflow, which is only available

on systems such as Linux, Windows, and Mac OS, and on Qt which is also limited to

a few OSes. As porting this part of OpenPilot to an RTOS would require a significant

effort, it is instead deployed unchanged in the paravirtualized Yocto Linux sandbox of

DriveOS. These modules receive a stream of simulated CARLA images over Ethernet di-

rectly in Linux. Interactions between the Longitudinal Controller and the rest of the ADAS

software are facilitated by inter-sandbox shmcomm channels. Thus, the DriveOS design

enables a cross-sandbox implementation of OpenPilot with real-time components running

in an RTOS and legacy, library-dependent components running in Linux.

3.4.4 Real-time Service Tasks

The above three DriveOS applications use two real-time service tasks, explained below.

These tasks are based on the Real-time Task as a Service model explained in Section 3.1.2.

Table 3.2 shows all the shmcomm channels between the real-time service tasks in Quest

and applications in Linux.
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Table 3.2: Shared Memory Channels in DriveOS
ID Description Data-flow (tasks) Data-flow (sand-

boxes)
Type Buffer

size
1 IC, IVI Sensor Reading IMQ→ IML Quest→ Linux Sync 10
2 HVAC (IVI) Control Actuation IML→ IMQ Linux→ Quest Sync 10
3 CARLA Sensor Reading AMQ→ AML Quest→ Linux Async -
4 CARLA Vehicle Control Actuation AML→ AMQ Linux→ Quest Sync 10
5 LongController Control Command AML → Long-

Control.
Linux→ Quest Sync 10

6 LongController Control Data AML → Long-
Control.

Linux→ Quest Sync 10

7 LongController Update Input AML → Long-
Control.

Linux→ Quest Sync 10

8 LongController Update Output LongControl. →
AML

Quest→ Linux Sync 10

3.4.4.1 CAN Gateway Service

A CAN Gateway Service in Quest mediates real-time CAN messages for Linux applica-

tions, enabling a real-time virtual CAN device interface. We start describing this service

from the right-hand side of Figure 3.4. A Linux application in DriveOS interfaces with a

car CAN bus network using a CAN mapper process in Linux. Every CAN mapper process

has one thread each for reading and writing CAN messages via shmcomm read and write

channels. Each CAN mapper thread in the Linux sandbox interacts with a counterpart in

the Quest sandbox via a specific shmcomm channel.

The CAN mapper threads in Quest (IMQ and AMQ in Figure 3.4) are part of the

CAN Gateway Service. Program 3.4 shows how the CAN mapper threads (CAN Readers

and Writers) are spawned in the Quest sandbox for NUM CAN number of CAN Channels.

Acting as a CAN concentrator, the CAN Gateway Service reads CAN messages from

different CAN Channels of the Kvaser USBcan Pro 5x HS. We use a real-time USB xHCI

(3.0) bus scheduling algorithm [GCW18] in the interrupt bottom-half handler in Quest for

fast and predictable CAN I/O. The Gateway then forwards CAN messages to appropriate

shmcomm channels. Program 3.5 shows the C code of a CAN reader thread that reads

CAN messages from a CAN Channel and forwards to Linux via a shmcomm channel.
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#define NUM_CAN 2
#define CAN2LINUX_VSHM_KEY0 101
#define LINUX2CAN_VSHM_KEY0 201

int can2linux_channel[NUM_CAN], linux2can_channel[NUM_CAN];

// Structure to pass arguments to the Reader and Writer Threads
typedef struct gate_th_args {

int can_ch; int can2linux_fd; int linux2can_fd;
int can_open_flags; int can_freq;
int can_hnd; int budget_us; int period_us;

} gate_th_args_t;
gate_th_args_t* thr_args = malloc(sizeof(gate_th_args_t) * NUM_CAN);

// Structure to represent a CAN message
typedef struct can_packet {

uint32_t id; int32_t can_msg_id; unsigned char can_msg[8];
unsigned int can_dlc;
unsigned long can_timestamp;

} can_packet_t;

pthread_t can2linux_th[NUM_CAN], linux2can_th[NUM_CAN];

for (i = 0; i < NUM_CAN; i++) {
// Set the arguments for a CAN Reader Thread
thr_args[i].can_ch = i;
thr_args[i].can_open_flags = canOPEN_EXCLUSIVE;
thr_args[i].can_freq = canBITRATE_500K;
thr_args[i].can2linux_fd = can2linux_channel[i];
thr_args[i].budget_us = 100;
thr_args[i].period_us = 2000;

// Set up a shmcomm channel from Quest to Linux for a CAN Reader thread
int shm_key = CAN2LINUX_VSHM_KEY0 + i;
can2linux_channel[i] = shmcomm_open_send(shm_key,

SHMCOMM_CREATE_CH | SHMCOMM_SYNC_CH, NULL,
sizeof(can_packet_t), 10);

// Spawn a CAN Reader Thread to read data from CAN Channel i
// and send to Linux via the above shmcomm channel
pthread_create(&can2linux_th[i], NULL, can2linux_task,

&thr_args[i]);

// Set the arguments for a CAN Writer Thread, by only changing
// the shmcomm channel and keeping everything else same from the Reader
// thread
thr_args[i].linux2can_fd = linux2can_channel[i];

// Set up a shmcomm channel from Linux to Quest for a CAN Writer thread
shm_key = LINUX2CAN_VSHM_KEY0 + i;
linux2can_channel[i] = shmcomm_open_receive(shm_key,

SHMCOMM_CREATE_CH | SHMCOMM_SYNC_CH,
NULL, sizeof(can_packet_t), 10);

// Spawn a CAN Writer Thread to write data from Linux to CAN Channel i
pthread_create(&linux2can_th[i], NULL, linux2can_task,

&thr_args[i]);
}

Code Block 3.4: CAN Reader and Writer in DriveOS CAN Gateway
Spawning CAN Reader and Writer Threads in the CAN Gateway in Quest

Upon receiving messages from a shmcomm channel, the CAN mapper threads in Linux

(IML and AML in Figure 3.4) forward them to appropriate applications based on CAN

message IDs. Similarly, Linux applications write to CAN channels in the reverse direction.

A CAN writer thread in the CAN Gateway is shown in Program 3.6.

We have two CAN mappers in the Gateway service for Infotainment (IC and IVI) and

ADAS. Figure 3.4 has color-coded CAN and shmcomm channels to show the CAN data-

flow for Infotainment (violet) and ADAS (blue).
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void* can2linux_task (
void* thread_args) {

gate_th_args* args = (gate_th_args*)
thread_args;

// Create a sporadic server in Quest
// corresponding to thread
struct sched_param s_params = {
.type = MAIN_VCPU,
.C =args->budget_us,
.T = args->period_us

};
int new_vcpu = vcpu_create(&s_params);
vcpu_bind_task(new_vcpu);

// Open a CAN Channel
args->can_hnd = canOpenChannel (
args->can_ch, args->can_open_flags);

canStatus can_stat = canSetBusParams (
args->can_hnd, args->can_freq, 0,
0, 0, 0, 0);

can_stat = canBusOn(args->can_hnd);

can_packet_t msg;
unsigned int can_flag, can_dlc;
unsigned long can_time; long can_id;
unsigned char can_msg[CAN_MAX_DLEN];

while(1) {
// Read from CAN Channel
can_stat = canRead (args->can_ch,

&can_id, &can_msg, &can_dlc,
&can_flag, &can_time);

//Send to Linux via shmcomm channel
msg.id = ++cnt;
msg.can_msg_id = can_id;
msg.can_dlc = can_dlc;
msg.can_timestamp = can_time;
memcpy(msg.can_msg, &can_msg, 8);
while(shmcomm_write(

args->can2linux_fd,
&msg, sizeof(can_packet_t)) <= 0);

}
}

Code Block 3.5: CAN Reader Thread in CAN
Gateway

void* linux2can_task (
void* thread_args) {

gate_th_args* args = (gate_th_args*)
thread_args;

struct sched_param s_params = {
.type = MAIN_VCPU,
.C =args->budget_us,
.T = args->period_us

};
int new_vcpu = vcpu_create(&s_params);
vcpu_bind_task(new_vcpu);

args->can_hnd = canOpenChannel (
args->can_ch, args->can_open_flags);

canStatus can_stat = canSetBusParams (
args->can_hnd, args->can_freq, 0,
0, 0, 0, 0);

can_stat = canBusOn(args->can_hnd);

can_packet_t msg;
unsigned int can_flag, can_dlc;
unsigned long can_time; long can_id;
unsigned char can_msg[CAN_MAX_DLEN];

while(1){
// Read from shmcomm channel
while(shmcomm_read(args->linux2can_fd,
&msg, sizeof(can_packet_t)) <=0);

// Check if this is a valid message
// and write to the CAN Channel
canWrite(args->can_ch,
msg.can_msg_id, msg.can_msg,
msg.can_dlc, msg.can_timestamp);

}
}

Code Block 3.6: CAN Writer Thread in CAN
Gateway

The IC and IVI use the synchronous shmcomm channel 1 to read sensor inputs such

as speed, engine control type (all-wheel-drive or rear-wheel-drive), temperature inside a

car, distance traveled, and so forth. The IVI application sends HVAC control commands

via another synchronous shmcomm channel 2 to CAN channel 1. The IC is a read-only

application and does not send any CAN messages.

OpenPilot uses the asynchronous shmcomm channel 3 to read the most recent CARLA

simulator sensor readings (vehicle speed and angle) and car cruise button status (1 = ini-

tialize cruise control, 2 = increase acceleration, 3 = decrease acceleration, 4 = cancel cruise

control). OpenPilot computes throttle and brake values by a longitudinal PI controller and

applies to CARLA via synchronous shmcomm channel 4 and USB-CAN.
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3.4.4.2 ADAS Longitudinal Controller Service

As stated in Section 3.4.3, OpenPilot uses a feed-forward PI longitudinal controller for

adaptive cruise control. The refactored implementation of OpenPilot in DriveOS runs the

controller in Quest as a synchronous real-time service task. It has a 50 µs budget and 1 ms

period, which is the same as in the stock OpenPilot.

For test purposes, CARLA simulator sensor data is delivered to the Longitudinal Con-

troller from the CAN Gateway service via ADAS CAN Mapper threads in Quest and

Linux. Section 3.5.2 explains the ADAS Controller pipeline in details. The ADAS Map-

per thread in Linux (AML) is responsible for filtering sensor data and feeding it to the

Longitudinal Controller in Quest via shmcomm channels (ID 5, 6, 7). AML also receives

throttle, brake and other control values from the controller, and sends CAN Control com-

mands to CARLA via shmcomm channel 4. The Linux-side implementation of OpenPilot

uses its own cereal publisher-subscriber messaging framework to obtain controller values

from AML, which are used for vehicle path and control planning.

Our DriveOS Longitudinal Controller depends on the control commands that it re-

ceives via the shmcomm channel ID 5. It supports three control commands: (1) INIT

for initializing the Longitudinal Controller values such as the proportional, integral, and

feed-forward constants, (2) RESET to reinitialize the PI loop, and (3) UPDATE to compute

the controller throttle and brake output by the PI loop. The controller command data for

INIT and RESET is sent via shmcomm channel 6. Both channels 5 and 6 are synchronous

channels because missing a control command is forbidden. The UPDATE data is separately

exchanged via shmcomm channels 7 and 8.
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3.5 Evaluation

Linux is commonly used in infotainment systems by popular automotive companies such

as BMW [Lin19] and Toyota [Den17], and as the basis of Ubuntu and Android distribu-

tions used with the OpenPilot ADAS software [com20]. DriveOS is therefore compared

against a standalone PREEMPT RT [RMF19] patched Yocto Linux for use in integrated

vehicle management systems.

In the standalone Yocto Linux VMS, software threads and interrupts are not assigned

to any specific cores. For comparison, an optimized version of the same standalone Yocto

Linux is tested. This version pins xHCI interrupts to Core 0, resulting in USB bottom-half

processing taking place on the same core, while all other threads execute on Core 1. In

summary, experiments test both an unoptimized and domain-optimized standalone Linux

against DriveOS.

In our experiments, DriveOS uses two cores although the system is capable of acti-

vating more - one is dedicated to Quest and the other is given to a paravirtualized Yocto

Linux with the PREEMPT RT patch enabled. DriveOS and the standalone Linux versions

are both tested in the HIL simulation infrastructure described in Section 3.4.1, using a real

car dataset collected from the Laguna Seca raceway in California (for IC and IVI) and

CARLA (for ADAS). For fair comparisons with DriveOS, all standalone Linux systems

run on a DX1100 and implement the equivalent CAN Gateway, Infotainment, OpenPilot

ADAS, IC and IVI logic as shown for DriveOS in Figure 3.4.

3.5.1 Application Parameters

Table 3.3 shows the real-time task budgets and periods for the Quest real-time USB-CAN

interface (USB xHCI Bottom-half handler and mhydra USB-CAN driver), CAN Gate-

way and longitudinal controller real-time service task. Linux-side timing critical tasks are
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run with the SCHED DEADLINE scheduling policy. We also run non-timing-critical back-

ground tasks in Linux that log data in the eMMC storage and periodically send data over

the network, as is common in modern cars [TE 18]. Next, we describe our experimental

results. All experiments were run and averaged over five times.

Table 3.3: Real-time Task Budgets and Periods

ID Task Budget
(ms)

Period
(ms)

Quest
A USB Bottom-half Handler (BH) 0.10 1
B mhydra rx 0.20 1
C Infotainment read mapper 0.10 2
D Infotainment write mapper 0.10 2
E ADAS read mapper 0.10 2
F ADAS write mapper 0.10 2
G Longitudinal Controller 0.05 1
H mhydra tx 0.20 1

Linux
I Infotainment read mapper 0.10 1
J Infotainment write mapper 0.10 1
K ADAS read mapper 0.10 1
L ADAS write mapper 0.10 1

Table 3.4: Delay Between Consecutive
CAN Messages (CAN Channel 1)

System Average Delay
Raw CAN Frame-based

Source (Hardware) 2.85 ms
Linux 3.73 ms
Optimized Linux 3.43 ms
DriveOS 2.86 ms

CAN ID-based
Source (Hardware) 82.5 ms
Linux 98.97 ms
Optimized Linux 94.38 ms
DriveOS 83.25 ms

3.5.2 Latency Measurements

We measure two types of latency values: end-to-end delay and delay between consecutive

messages. Maximum end-to-end delay gives us an upper bound on the round-trip-time of

a sensor input and a corresponding actuator output. Such end-to-end latency is critical for

ADAS services, which need to apply throttle and brake changes within a certain time for

safety. Hence, we measure latency on the ADAS controller pipeline, while IC and IVI

process CAN messages.

The task pipeline in the ADAS controller is as follows (with task IDs from Ta-

ble 3.3 shown in parentheses): USB BH (A) → mhydra rx (B) → ADAS read

mapper (Quest) (E) → ADAS read mapper (Linux) (K) → OpenPilot

Longitudinal Controller (G) → ADAS write mapper (Linux) (L) →
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ADAS write mapper (Quest) (F)→ mhydra tx (H)→ USB BH (A). The theo-

retical worst-case end-to-end delay in a pipeline is the summation of the periods of all the

tasks [GSW20], assuming input data is available only at the beginning of a period of the

pipeline’s source task. Therefore, the theoretical end-to-end delay bound for the controller

pipeline is: (T (A) + T (B) + T (E) + T (K) + T (G) + T (L) + T (F ) + T (H) + T (A)) =

(1 + 1 + 2 + 1 + 1 + 1 + 2 + 1 + 1) = 11ms.

This theoretical end-to-end delay bound is in the ballpark of what is expected in a

working automotive system (∼10ms) [RIM16]. Empirical results show that DriveOS per-

forms much better than both the expected and theoretical worst-case delays.
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Figure 3.5: Controller Pipeline End-to-end Delay

Figure 3.5a (log scale) shows the average, minimum and maximum end-to-end delays

of the controller pipeline in standalone Linux, optimized Linux and DriveOS. Figure 3.5b

shows the corresponding cumulative distribution function (CDF) of the delays. The ex-

periments are run with 20 non-critical background threads occupying almost 60% CPU

utilization in Linux. Such background processes are representative of third-party applica-

tions (e.g., Spotify, Maps, and Data Backup). In our experiments, these tasks send data

over an Ethernet network via TCP socket connections, and copy backup logs to storage.
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The device interrupts generated by these background tasks are intended to reveal potential

interference on timing critical tasks.

In Figures 3.5a and 3.5b, the theoretical worst-case (11ms) and industry expected

(10ms) delays are respectively shown with a dashed and solid line. Although Linux per-

forms on average within bounds, the maximum delay is well above what is allowed. In

Figure 3.5b, the CDF of delays shows that more than 15% of the end-to-end latencies

are greater than 10ms in both standalone Linux versions. This could lead to an unsafe

implementation of ADAS services and make the system unfavorable to regulatory authori-

ties. DriveOS performs well within industry standards and theoretical bounds for average,

minimum, and maximum end-to-end delays for a safe implementation of ADAS.

The median latencies in every 10 CAN frames in Figure 3.6 further reveals the un-

predictable and inconsistent latency in Linux. It also shows that DriveOS has a very low

end-to-end delay variation. Even though Linux does not have the additional CAN mapper

threads of Quest, it performs badly because it lacks a timing-predictable interrupt han-

dling mechanism. Optimized Linux improves the delay slightly because xHCI interrupts

are pinned to Core 0. However, Linux’s bottom-half processing of other interrupts on

Core 1 is still able to interfere with the execution of more important SCHED DEADLINE

threads on that core. Quest correctly matches the scheduling priority of the I/O bottom-half

handler with the thread waiting on I/O. Additionally, DriveOS refactors the longitudinal

controller logic of OpenPilot to Quest, which provides temporal isolation between tasks

and interrupts for time-critical tasks. Consequently, DriveOS achieves 1
12

th the maximum

end-to-end delay observed in Linux.

In another set of experiments, we measure the delay between consecutive CAN frames

in CAN Channel 1. Table 3.4 shows two types of average delay over 5000 CAN frames:

(1) delay between consecutive arbitrary CAN frames and, (2) delay between consecutive
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Figure 3.7: Infotainment (IC and IVI) Throughput

frames of the same CAN ID. The source row shows the delay at the CAN message gen-

erator on the Ubuntu 16.04 simulator machine. The delay at source is representative of

the delay observed at the sensor and actuator hardware. We see that DriveOS receives

messages with a similar average delay. However, both versions of standalone Linux re-

ceive raw CAN messages delayed by 20-30%. Similar behavior was observed for CAN

ID-based delays. This shows that DriveOS introduces negligible latency overhead on top

of a CAN hardware source for a real car’s CAN dataset, especially in comparison to Linux

used in the automotive industry. Therefore, ECU hardware could be safely and predictably

replaced by real-time software service tasks in DriveOS, where sensor readings and actu-

ator outputs are communicated via CAN messages.

3.5.3 Throughput Measurements

In this experiment, we test the throughput from CAN Channel 1 to the IC and IVI appli-

cations. We measure the throughput at the end of IML in Figure 3.4 before forwarding the

data to IC and IVI. Higher throughput means that IC and IVI tasks show more accurate and

informative data on the car displays. Figure 3.7 shows average CAN frames per second in

a period of 3 minutes, with increasing number of non-timing-critical processes in Linux.
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These background processes log CAN frames and make copies of data for safety. In a de-

ployed system multiple third-party applications would actually be running as background

threads.

Although Linux performs similar to DriveOS in the absence of any background

threads, its performance drops as the number of such threads increases. These non-critical

threads increase the number of device interrupts in Linux, and Linux fails for the same

reasons stated in the earlier subsection. Optimized Linux performs a little better because

xHCI interrupts are delivered to Core 0. However, DriveOS performs consistently better,

and independently of the background threads because Quest’s USB-CAN I/O handling is

not disrupted by the background threads in the Linux sandbox. Furthermore, DriveOS’s

better performance is especially significant because it has a longer pipeline, traversing

through a virtualized Quest sandbox and shmcomm shared-memory channels, that are ab-

sent in Linux. This shows the benefits that DriveOS’s I/O handling and inter-sandbox

communication mechanism provide.

Table 3.5 shows the average throughput and standard deviation of IC and IVI CAN

message reading (at IML in Figure 3.4), and OpenPilot CAN message writing (at AML

in Figure 3.4). DriveOS achieves higher throughput and better predictability with lower

standard deviations. Table 3.5 also shows the throughput data for our version of OpenPilot

in Linux, which communicates to CARLA via Ethernet. Although the throughput is worse

than DriveOS’s performance with CAN, it is similar to standalone Linux’s USB-CAN

throughput. This shows that a timing-sensitive implementation of Ethernet could be an

alternative to a CAN bus network in future automotive systems.

Scaling Time-Critical Processes In the next set of experiments, we test the scalability of

critical processes, which are representative of ECU functions implemented as software ser-

vices. These processes read from and write to the CAN interface (C = 20µs, T = 20ms).
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Increasing the number of such processes should not affect the Infotainment, ADAS and

other car services. Figure 3.8 shows the throughput of infotainment services while run-

ning 0–15 time-critical processes in the system. The throughput stays the same in DriveOS

against increasing number of critical processes, as they are run as real-time services in

Quest. In spite of running time-critical processes as SCHED DEADLINE tasks, the drop

in infotainment throughput shows that Linux does not scale against time-critical tasks that

access the USB-CAN (“CAN I/O”, yellow line), and disk and Ethernet devices (“Other

I/O”, green line). Hence, it is not a favorable choice for future ECU consolidation.
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3.5.4 Startup Times

The system and application startup times are important factors for the end-users of a ve-

hicle management system. The next set of experiments investigate whether the paravir-

tualization of Yocto Linux in DriveOS has any significant effect on either Linux or the

applications’ startup times.

The average over five cold boots is noted, where the system is initially powered down.

The DriveOS paravirtualized Yocto Linux takes 18.89 seconds to boot and start the Linux
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Table 3.5: Throughput with 20 Background
Processes

System Average
(frame/sec)

Standard
Deviation

IC and IVI (CAN Channel 1)
Linux 1378.6 769.5
Optimized Linux 1558.3 632.5
DriveOS 1938.4 29.36

OpenPilot (CAN Channel 3)
Optimized Linux
(Ethernet)

17.45 0.91

Optimized Linux
(CAN)

17.56 1.40

DriveOS 19.94 0.25

Table 3.6: Average Cost of shmcomm Channel
Operations

System Userspace
(µs)

Kernel
(µs)

VMM
(µs)

create
Quest 12 69 5405Linux 30 287

connect
Quest 20 21 5407Linux 40 252

destroy
Quest 6.5 140 5398Linux 6.8 391

close
Quest 6.5 -Linux 6.8

read
Quest 0.01 -Linux 0.01

write
Quest 0.03 -Linux 0.03

shell at the serial port. In comparison, a standalone Linux takes 17.56 seconds to boot.

The extra time to boot the paravirtualized Linux is the time Quest takes to boot itself

before executing the boot logic of Linux. The IC and IVI application takes 674ms to start

in DriveOS, whereas it is 632ms in standalone Linux. The almost negligible additional

time in starting the IC and IVI in DriveOS is because of the overhead of establishing the

inter-sandbox shmcomm channels. This is studied in the next section. In subsequent work,

DriveOS uses ACPI power management techniques to suspend to, and resume from, RAM.

A suspended system is shown to consume minimal power but is able to resume critical

services in several hundred milliseconds. The details of how this works are out of the

scope of this paper.
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3.5.5 Inter-sandbox Communication Overhead

For all shmcomm operations, we have measured the cost at three system levels in DriveOS:

(1) Guest OS userspace (ring 3 in x86), (2) Guest OS kernel (ring 0) and, (3) VMM or hy-

pervisor (ring -1). Userspace and kernel level measurements are performed separately for

Quest and Linux. VMM measurements are common for both Quest and Linux. Table 3.6

shows the average cost of channel operations at different system levels in Quest and in

Linux. Creating, connecting and destroying a channel comes with a higher cost because

we need to make an expensive hypercall (VMExit) to the VMM for these operations. The

major time is thus spent in the VMM. Figure 3.9 shows the cost of channel operations

in Quest on a log scale. It reveals how most time is spent in the VMM logic for these

operations. In addition, the Linux kernel incurs more overhead in channel operations than

Quest. For example, creating a channel takes 287µs in Linux, whereas it is 69µs in the

Quest kernel.

Once shared memory channels are established, the costs of reading, writing and closing

a channel are negligible, because the channel memory is already mapped to the userspace

application. With careful time-budgeting of channel endpoints, the DriveOS inter-sandbox

communication mechanism achieves fast and predictable runtime reads and writes.



Chapter 4

Model-based Multi-domain Application

Framework

Many vehicle functions such as heating, ventilation and air conditioning (HVAC) or pow-

ertrain control are developed for simple, single-core ECUs. These ECUs are managed

by a simple RTOS or firmware. Automotive engineers design functions for these ECUs

without much knowledge of advanced computer systems constructs like control flow (e.g.,

threads), data structures, and low-level communication primitives. They prefer model-

based design languages like Simulink and LabView [Fri06]. However, these languages

lack support for multi-OS domain systems, and advanced programmers are needed to port

the ECU functions to a next-generation VMS like DriveOS.

We introduce ModelMap [SFW22], a model-based multi-domain appli-cation devel-

opment framework for automotive functions in DriveOS. ModelMap implements a set of

Simulink interfaces that target multiple sandboxes, or OS-level protection domains, in

DriveOS. It provides a Simulink interface to bind a task to a real-time periodic thread in

DriveOS for timing-predictable execution. It enables shmcomm inter-task communication

primitives in Simulink. ModelMap also supports real-time I/O for commonly used pro-

tocols such as controller area network (CAN) bus. Mixed-criticality vehicle functions in

multiple OS domains are encapsulated as nested binaries with the support of executable

code for multiple application binary interfaces.
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We present two Simulink automotive software models and implement them using Mod-

elMap Simulink blocks in DriveOS. These models are: (1) a generic CAN Gateway ser-

vice, which delivers CAN messages to different software threads in DriveOS, according

to end-to-end timing guarantees1, and (2) a port of a HVAC controller for an electric ve-

hicle being developed with Drako Motors. We demonstrate the HVAC model’s functional

and timing correctness with a model-in-the-loop (MIL) and hardware-in-the-loop (HIL)

execution equivalence against real-world data traces.

The overall contributions of ModelMap are three-fold: (1) we introduce the first

model-based multi-domain application development and deployment framework for a

VMS; (2) we demonstrate that Simulink models running on a multicore x86 machine in a

centralized VMS have predictable end-to-end delays; (3) we illustrate a Simulink model’s

functional and timing correctness with MIL and HIL equivalence.

In the next section, we describe the ModelMap tools for DriveOS vehicle management

and code generation. Section 4.2 explains the nested binary concept and its runtime in

DriveOS. Section 4.3 demonstrates the usage of the model-based design tools to imple-

ment ECU functionalities in DriveOS, along with an electric vehicle HVAC case study.

Then, we present the evaluation results with simulated and real-world datasets.

4.1 Design Tools

Figure 4.1 shows a high-level overview of the ModelMap code generation steps for a

DriveOS multi-domain application. A model is first designed with ModelMap and other

Simulink blocks. Then, ModelMap block-level and DriveOS system Target Language

Compiler (TLC) [Sim22] files are utilized by the Simulink Embedded Coder, to gener-

1This gateway is more generic than the one presented in Section 3.4 which works with only two applica-
tions.
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ate the domain OS-specific C source code. An OS-specific version of gcc then cross-

compiles C source into Quest and Linux ELF binaries. Finally, a nested binary compiler

(see Section 4.2) is used to create a multi-domain binary executable.

Figure 4.1: The ModelMap Workflow

A modified Embedded Real-Time (ERT) system TLC file [Sim22] specifies the C

code generation from Simulink model blocks. The main function C code generation for

DriveOS domain-specific OSs is explained in Section 4.1.1.4.

4.1.1 Thread Setup Blocks

A threadSetup Simulink block is used to create periodic threads for either Quest or

Linux, and aperiodic threads restricted to Linux. The block details are summarized below:

• Block Type: C MEX S-function [Mat22c].

• Block Parameters: A Simulink block mask [Mat22d] identifies thread-specific param-

eters. These include the Thread Name and Domain OS (Quest or Linux). A Quest peri-

odic thread is further parameterized with a Runtime and Period. A Linux domain periodic

thread has a Runtime, Period and Deadline, while a Linux-only aperiodic thread has no

further parameters.

• Block Output: The output of this block is a function-call trigger that connects to a



50

function trigger port of a function-call subsystem [Mat22h]. This function-call subsystem

is executed as a threaded task configured using the above parameters.

4.1.1.1 Quest Periodic Threads

Quest RTOS [DLW11, Wes22] is the high criticality DriveOS domain [Ves07], providing

support for periodic threads that perform real-time I/O and secure CAN bus operations.

Application threads in this domain leverage a port of the newlib C library API [New22],

as well as interfaces specific to Quest.

High criticality control tasks, which require CAN bus access, run as periodic threads

in Quest. Example tasks include HVAC and powertrain control, which are designed as

Simulink function-call subsystems. The function trigger ports of these subsystems are

connected to the output port of a corresponding threadSetup block. threadSetup

is configured with a Thread Name parameter, and the Domain is set to Quest. A model

developer provides the Runtime and Period parameters that are respectively set as the

budget (C) and period (T) of a Quest periodic task, τ . τ is implemented following a Liu-

Layland task model and scheduled using the RMS algorithm [LL73]. This guarantees τ

receives its budget, C, every period, T, when runnable.

4.1.1.2 Linux Periodic Threads

Linux is the lower criticality GPOS domain in DriveOS. Although not a hard real-time OS,

it provides sufficiently predictable timing guarantees for SCHED DEADLINE [LLFC11]

tasks using the PREEMPT RT patch [RMF19,SW21]. Linux provides complementary sup-

port for Quest with its libraries, device drivers and services that would take many years of

development to implement in a new RTOS. A developer provides the Runtime, Period and

Deadline threadSetup block parameters that are passed on to the SCHED DEADLINE
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policy via the Linux sched setattr system call.

4.1.1.3 Linux Aperiodic Threads

A centralized VMS also runs non-critical operations such as logging, storage and over-

the-air updates. threadSetup supports these tasks as Linux pthreads. No additional

threadSetup block parameters are needed.

4.1.1.4 Code Generation

The threadSetup S-function block’s properties are described in a C MEX

(threadSetup.c) file for simulation, and in a TLC file (threadSetup.tlc) for

code generation. As the threadSetup block is designed for model deployment in a

DriveOS system, threadSetup.c only saves the block parameters (Thread Name, Do-

main Name, Runtime, and so forth) for code generation, without any simulation. In the

threadSetup.tlc file, three key steps are followed to generate its corresponding C

code:

1) The BlockInstanceSetup TLC function of a S-function block is executed at

the very start of code generation [Mat22a]. ModelMap uses this function to retrieve all the

block parameters, such as Thread Name and Domain, from the simulation environment.

2) The Start TLC function (Code Block 4.1) includes any initializing code in the

final C source code [Mat22a]. ModelMap uses this function to assign the previously re-

trieved block parameters (Runtime, Period and, if applicable, Deadline) to a DriveOS

domain-specific C structure (linux or Quest sched param t).

ModelMap uses an array of * sched param t structures, called

all thrd parms, to save the parameters of multiple threads in the same domain,

each time a Start function of a threadSetup block is called. The DriveOS system

TLC file declares all thrd parms.
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%% Simulink TLC Code starts with a %; TLC comments start with a %%
%% Any other code goes to an initializing block of the final C code
%if targetosVal == 0 %% SmaRTOS domain
s_params->C = %<smartosbudget>; s_params->T = %<smartosperiod>;

%elseif linuxschedpolicyVal == 1 %% Linux domain SCHED_DEADLINE
s_params->is_sched_deadline = 1; s_params->C = %<linuxruntime>;
...

%endif
s_params->threadfuncname = %<threadName>_func;

Code Block 4.1: A snippet of the Start TLC function

3) Finally, the Output TLC function of a block [Mat22a] is used to generate

the block’s corresponding C code. ModelMap uses Output to add a new func-

tion in the model’s C source file, named <threadNameVal> func. The same

function is also embedded in the previous Start function as the pthread func-

tion name. The domain-specific * sched param t C structure is passed as an ar-

gument to the pthread function, to set the corresponding thread scheduling param-

eters. In the end, the function-call subsystem’s corresponding C call is retrieved via

a %<LibBlockExecuteFcnCall>() TLC function, and embedded in an infinite

while loop.

The DriveOS system TLC spawns the pthreads from the main function of the

generated C source code. A Simulink custom file processing template [Mat22e] is

used to generate the main function. A new pthread is created for every element in

all thrd parms. Part of the main function is shown in Code Block 4.2.
for(i = 0; i < num_threads; i++) {
#ifdef SMARTOS

pthread_t* new_thread = (pthread_t *) malloc(sizeof(pthread_t));
pthread_create(new_thread, NULL, all_thrd_parms[i].threadfuncname,

all_thrd_parms[i]);
#else

// Linux domain
...

#endif
}

Code Block 4.2: A snippet of the ModelMap-generated main function in C

4.1.2 Inter-task Communication Blocks

ModelMap provides a set of blocks for intra- and inter-domain task communications.

These blocks are set up as shared memory communication channels via the hypervisor

layer of DriveOS [SW21,LXRD19]. DriveOS uses Intel VT-x extended page tables (EPTs)
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to securely map host physical memory regions between communicating threads, irrespec-

tive of their domain. Both synchronous and asynchronous communications are supported

across channels identified with a unique channel key.

DriveOS has a set of C API functions in Linux and Quest to set up the communication

channels. ModelMap implements MATLAB interfaces for these C functions [Mat22b],

which are described further in the next two subsections.

A ModelMap createChannel Simulink block takes an integer input as the

channel key. It has block mask parameters to set the type and specification of the

channel. For a synchronous channel, the buffer length and the size of each element must

be specified. For an asynchronous channel, only the element size is needed.

4.1.2.1 Synchronous Communication

A synchronous channel is implemented as a ring buffer in DriveOS. This is useful for

control data that must be communicated without loss. Channel data structures are created

by OS-specific userspace libraries in both Quest and Linux domains. syncRead and

syncWrite are busy-waiting calls that read and write, respectively, a message in the

buffer. Busy-waiting is used for synchronous communication in Quest-V [WLMD16] and

DriveOS [SW21]. This contrasts with ACRN’s blocking approach [LXRD19].

Blocking or busy-waiting is problematic when reading or writing to different channels.

As will be seen later in Figure 4.9, a syncRead on one channel may delay the execution

of syncRead calls on other channels. To mitigate this issue, ModelMap implements

syncNWRead and syncNWWrite, which are non-waiting (NW) function blocks. Call-

ing syncNWRead (or syncNWWrite) when a channel buffer is empty (or full) immedi-

ately returns -1, otherwise it returns the size of the read (or written) message.
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4.1.2.2 Asynchronous Communication

An asynchronous channel in DriveOS is implemented using Simpson’s four-slot

buffers [Sim90]. This is useful when the most recent (i.e., freshest) data must be commu-

nicated, while stale data is discarded. Sensor readings fall into this category of commu-

nication. asyncRead and asyncWrite Simulink blocks read and write asynchronous

messages, respectively.

4.1.3 CAN I/O Blocks

CAN bus communication between sensors and actuators is commonly used in the automo-

tive domain. DriveOS implements real-time USB-CAN I/O in its Quest domain [GCW18].

The CAN I/O API of Quest is accessed via MATLAB’s C-interface function blocks, in-

cluding canChannelSetup, canRead, and canWrite. canChannelSetup has a

block parameter that sets the CAN bus baud rate with an option from 10 kbit/s to 1Mbit/s.

4.1.4 Timing Blocks

ModelMap implements several Simulink timing blocks. MATLAB function block

time from start outputs the time in µs since the model starts running. Similarly,

time since last called outputs the time in µs since the last time this block was

called. These timing functions use the x86 RDTSC instruction to measure processor clock

cycles, divided by the base clock frequency, which yields accurate time in µs. These blocks

are C-function interfaces in MATLAB [Mat22b].

4.1.5 Domain-specific C Code Generation

Domain-specific components of a model are designed as atomic subsystems in Simulink.

ModelMap generates domain-specific C code for a selected subsystem target in Simulink

with the MATLAB command slbuild(<subsystem name>).
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4.2 Nested Binaries

ModelMap produces an ELF binary [Lu95] format as executables for DriveOS, called a

nested binary. Similar to a fat binary [DFS98], a nested binary contains multiple binary

executables. These individual binary executables may have Application Binary Interfaces

(ABIs) for different OSs. For example, DriveOS nested binary executables have binaries

for both Quest and Yocto Linux.

ModelMap includes a nested binary compiler. A corresponding nested binary loader

performs runtime parsing of individual binary executables within a nested binary. It then

spawns a new process for every binary into a corresponding DriveOS sandboxed domain.

4.2.1 Nested Binary Format

The nested binary acts as a container for the individual raw ELF binaries. It stores the

raw binary bytes in its separate ELF data sections, named binexec sections. There is

a binexec section for each individual domain-specific binary. The location offsets to

these data sections are stored in the ELF section header table. A nested binary also has

a metadata ELF section to store the mapping between an individual ELF binary, saved

in a binexec section, and a runtime domain ID for the binary. Figure 4.2 shows the

organization of the nested binary sections in the ELF format.

4.2.1.1 ELF Header

The ELF header defines the target OS ABI, bitness, and other details in an ELF binary.

The following fields are modified: (1) e ident[EI OSABI]: The target OS ABI is set

to a custom value of 0x15; (2) e machine: The target ISA is set to EM 386 (0x03) for

an x86 target; (3) e type: The object file type is set to 0x02 for an executable file; (4)

e ident[EI DATA]: The endianness is set to little-endian.
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Figure 4.2: Nested Binary Sections

4.2.1.2 Program Header Table

This section has one entry to satisfy the ELF format requirement. The entry is the Program

Header Table (PT PHDR) itself. As individual executables in a nested binary have their

respective program header table for runtime process image information, this section is not

needed.

4.2.1.3 Section Header Table

This section lists all the data sections in a nested binary:

• binexec: Every nested binary has one or more binexec sections. These sections

contain the individual binary executables in different ABIs as raw binary bytes.

The name of every binexec section is appended at the end with an integer numeric

ID, starting from 1. This ID specifies the order in which the binaries will be spawned

at runtime, where lower ID means earlier execution. Figure 4.2 shows N number of

binexec sections: binexec1, binexec2, . . . , binexecN, where binexec1

will be spawned before binexec2 and so on.
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• metadata: The metadata section maps an individual binary in a binexec section

to a domain in DriveOS. The nested binary loader uses the metadata section to spawn a

new process from an individual binary in the corresponding domain. The section contains

an array of C structs which holds a tuple of the binexec section name and the cor-

responding integer domain ID. Currently, DriveOS assigns domain ID 1 to Quest and 2 to

Linux.

• shstrtab: This is the string table section that contains the section names, like other

ELF binaries.

4.2.2 Nested Binary Compiler

ModelMap’s nested binary compiler (nested bin cc) creates a nested ELF binary from

multiple individual binary executable files. The compiler utilizes the libelf library

[Kos10] to create, enumerate and organize different ELF binary sections according to the

above format. The following command is used to create a nested binary:

nested_bin_cc <Binary File1> <Domain ID1> ...

<Binary FileN> <Domain IDN> <Name of Nested Binary>

The above command combines N ELF binary executable files and saves the mapping be-

tween a binary and its runtime domain in the metadata section. For example, Binary

File1 is mapped to Domain ID1. A new nested binary is created as per the last ar-

gument. The sections of a nested binary can be inspected with binutils tools such as

readelf.

4.2.3 Nested Binary Loader

The nested binary loader is also implemented with the libelf APIs [Kos10]. The loader

runs in a DriveOS Linux domain and takes a nested binary as the first argument. It also
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takes a number of command-line arguments for every individual ELF binary. The follow-

ing command is used to execute a nested binary:

nested_loader <nested ELF binary>

<argc1> <argv11> ... <argc2> <argv21> ...

Here, argc1 is the number of command-line arguments for the binexec1, starting with

argv11. Similarly, argc2 is the argument count for binexec2, starting with argv21,

and so on.

The loader parses the metadata section in a nested binary to read the mapping be-

tween a binexec section and its runtime domain. It spawns a new process with the raw

bytes of a binary embedded in a binexec section to its respective domain. Figure 4.3

summarizes the steps to execute a binary in Linux and Quest.

4.2.3.1 Executing a binary in a Linux Domain

The nested binary loader first parses the metadata and then iterates over the sections in a

nested binary to find the corresponding binexec sections. It checks whether the domain

ID in an entry of the metadata section is 2. If it is, the loader employs the fork-and-exec

approach in Linux to spawn the raw binary as a new process. However, as the executable

is not in a file and directly available in memory, the execve-class of C functions cannot

be used. Instead, the loader creates a new file descriptor for the memory location of the

Linux binary with the memfd create function [Lin22b]. Then, it forks a new child

process and calls fexecve [Lin22a] to execute the binary.

4.2.3.2 Executing a binary in a Quest Domain

Executing a program in a remote Quest domain requires more effort than starting an exe-

cutable within Linux. The nested binary loader running in Linux first identifies the domain

ID=1 for a Quest binary object. It then sends the raw binary bytes to Quest via shared
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Figure 4.3: Nested Binary Loader

memory as shown in Figure 4.3. A specific shared memory region of 800KB is mapped

between the Quest and Linux domains at system boot time for remote binary execution.

The region is appropriately sized to accommodate Quest static binary sizes. This shared

memory region works as a synchronous ring buffer channel with a single buffer slot. A

remote binary loader process in Quest polls the shared region for any new binary execution

request. Once the nested binary loader in Linux indicates that it has written a new program

to the shared region, the remote binary loader in Quest starts reading the program and its

arguments. Then, the remote Quest loader spawns a new process with a fork-and-exec

mechanism.

4.3 Evaluation

ModelMap is tested with custom and real-world Simulink models. The goal is to show

that the worst-case end-to-end (E2E) delays, or the maximum reaction times [DZDN+07],

of the models are within their expected upper bounds after deployment in DriveOS.

ModelMap Simulink blocks are applied to the following three models: (1) a multi-

domain synthetic benchmark with different types of inter-task communication, (2) a

DriveOS CAN Gateway [SB07] to filter and forward CAN messages to different Quest and

Yocto Linux applications, and (3) a port of an automotive HVAC control Simulink model
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for a MotoHawk ECU to DriveOS. The functional and timing correctness of the ported

HVAC model is demonstrated by the output equivalence in both MIL and HIL executions.

The three models are tested with DriveOS running on a Cincoze DX1100 industrial

PC [Cin22], as described in the previous chapter. The HIL simulation setup of DriveOS in

Figure 3.4 is used in these experiments as well. As it is described in Section 3.5.1, DriveOS

uses two USB xHCI bottom-half handler threads in Quest, each with budget=0.1ms and

period=1ms, referred to as USBBH rx and USBBH tx. Two USB-CAN kernel driver

threads, each with budget=0.2ms and period=1ms, send (CAN tx) and receive (CAN rx)

CAN messages.

4.3.1 Synthetic Benchmarks

Figure 4.4 shows our multi-domain Simulink benchmark model, designed using Mod-

elMap blocks. The inter-task and CAN channel setup blocks are omitted. The model reads

a CAN message in the canReader atomic subsystem of the Quest domain (Domain 1)

from CAN channel 0 (CAN0) via canRead. Then, syncWrite forwards the data to the

procThread atomic subsystem for processing in the Linux domain (Domain 2). This

setup allows procThread to apply any control logic to the received message using ad-

ditional Simulink blocks. For our experiments, procThread forwards the message to

a canWriter atomic subsystem in Domain 1 using syncWrite. The canWriter

then outputs a message on CAN channel 1 (CAN1). This model is representative of the

canonical communication path between two CAN bus interfaces and separate OS domains

in DriveOS.

The canReader, canWriter and procThread blocks in Figure 4.4 are function-

call atomic subsystems, configured as periodic threads. Their function trigger ports are

connected to the output ports of the threadSetup blocks. The threadSetup blocks

are assigned to the Quest domain for the canReader and canWriter subsystems, and
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Figure 4.4: A Multi-Domain Simulink Model for Benchmark

to the Linux domain for the procThread subsystem. Their budgets and periods, given

in Table 4.1, are derived empirically by profiling [WEE+08], and assigned in the corre-

sponding threadSetup blocks. canReader and canWriter subsystems rely on

Quest real-time capabilities. procThread is representative of a lower criticality control

task that is scheduled in the Linux domain using the SCHED DEADLINE policy.

Table 4.1: Budgets and Periods for the Synthetic Benchmark
Subsystem/Thread Budget (µs) Period (µs) Util. (%) # of Threads

Domain 1
canReader 100 2000 5% 1
canWriter 100 2000 5% 1

Domain 2
procThread 100–500 1000 10–50% 1

The Simulink model’s corresponding C code and subsequent nested binaries are auto-

matically generated. When this model is launched by ModelMap’s nested binary loader,

canReader and canWriter threads are spawned in Domain 1, and procThread is

spawned in Domain 2 at runtime. This model is a classic example of a sensing-processing-

actuation task pipeline [DZDN+07, BDM+17].

4.3.1.1 End-to-end Delay Performance

We measure the end-to-end (E2E) delay (also known as the maximum reaction
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time) [DZDN+07, DBCC19] of a CAN message traversing through canReader

→procThread → canWriter threads. The E2E delay upper bound for a pipeline

of periodic real-time tasks has been theoretically analyzed before [DZDN+07, BDM+17,

DBCC19, CWE18], but only for a domain-specific scheduling algorithm. However,

it is important to measure the E2E delay of multi-domain applications in a central-

ized VMS where the time-critical software components expand beyond a single do-

main [SW21, BSC+21]. We perform an experimental evaluation of such multi-domain

applications in this paper and use the sum of the task periods [GSW20] (optimistic) and

Davare’s upper bound [DZDN+07] (conservative, twice the sum of periods assuming

response-time of a task≤ its period) as the two target E2E delay bounds. As stated earlier,

the USBBH rx, USBBH tx, CAN rx and CAN tx threads are also considered in a task

chain for CAN I/O, as a CAN message has to pass through these I/O threads as well. For

example, the aggregate period delay bound for Figure 4.4 will be
(

(1 + 1 + 1 + 1) [for the

I/O system threads] + (2 + 2 + 1) [from Table 4.1]
)

= 9ms.

4.3.1.2 Result Analysis

A stream of messages is sent from an Ubuntu 18.04 Linux machine to DriveOS via CAN0

on the DX1100. A corresponding message is received via CAN1 on the same Ubuntu

machine. The sent and received CAN message timestamps are logged with candump in

Ubuntu, to calculate the E2E delay. In the first set of experiments, we vary the utilization

(ratio of Runtime and Period) of the procThread subsystem from 10 to 50% by increas-

ing the Runtime parameter in the associated threadSetup block. Figure 4.5a shows the

minimum, average and maximum E2E delays with increasing procThread utilization

in Linux. All the E2E delays are within the target upper bounds.

Figure 4.5a shows that the maximum E2E delay is improved by 46%, as

procThread’s utilization is increased from 10% to 50% in Linux. This coincides with
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Figure 4.5: Benchmark E2E Delay vs Domain 2 Task Utilization

the increased fraction of all E2E delays within the x-axis bound in Figure 4.5b. The

median latency every 10 frames in Figure 4.6 is more variable for the 10% case than

others. Allocating more utilization to a Linux domain subsystem not only improves the

maximum E2E delay but also reduces jitter. However, CPU utilization is often limited in

resource-constrained automotive systems. ModelMap’s maximum E2E guarantee is cru-

cial for time-critical control software modeling.

procThread in RTOS vs. Linux The next experiment compares the previous model

to one where the procThread subsystem in Figure 4.4 is moved to Domain 1, leav-

ing Domain 2 idle. A special BG scheduling mode in Quest is also tested. This mode

gives additional CPU time to a task beyond its model-specified CPU time via background

scheduling, if other tasks do not need anymore CPU.

Figure 4.8a shows the E2E delays when increasing the procThread utilization up to

30% 2, keeping its period fixed at 1ms. All E2E delays are under the target upper bounds.

The maximum E2E delays for the QuestBGmode stay almost the same, as procThread

leverages the additional CPU time. Without BG mode in Quest, the E2E delays are still

well under the target bounds, but the maximum ones are worse than Linux for higher

2>30% is not possible due to the rate-monotonic scheduling bound with other tasks.
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utilization. As procThread’s period is fixed, its priority remains same in Quest, even

with higher utilization. Therefore, the maximum E2E delay does not decrease as much as

it does while running in Linux, where only procThread is executed.

In another experiment, procThread’s period is increased from 1ms to 8ms, keeping

its utilization fixed at 10%. The results in Figure 4.8b show that the E2E delays are in-

creased with greater procThread period. If a CAN message is not handled in the same

job (i.e., task instance) that it is received, it might wait for potentially more than a task’s

period to be transferred. Therefore, E2E delays increase with higher procThread peri-

ods. However, the maximum E2E delays are within the target upper bounds, except for the

8ms period in Linux where it violates the aggregate period bound. As the procThread
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period in the 8ms case is significantly more (4x) than the periods of canReader and

canWriter threads (2ms), buffering delays increase the maximum E2E delay beyond

the sum of periods. Nevertheless, all the delays are well under Davare’s bound.

Asynchronous Communication Block The next experiment replaces all syncRead

(and syncWrite) blocks with asyncRead (and asyncWrite) blocks in the model of

Figure 4.4. In asynchronous communication, if a receiver task has a greater period than a

sender task, then a message is potentially overwritten by the sender, before it is observed

by the reader. The number of lost messages is important in asynchronous communica-

tions. Figure 4.7 shows the loss-rate (ratio of number of lost messages and total messages)

against increasing procThread period, while it is run in Linux and Quest.

A stream of 1275 CAN messages are sent at 5ms intervals from the Ubuntu machine.

In Figure 4.7, as long as receiving procThread’s period in Linux is less than the sending

canReader’s period of 2ms, there is no data loss. The loss-rate increases with greater

periods from 2ms. As procThread’s period goes greater than or equal to canReader’s

period, procThread starts missing CAN messages. In the Quest-only model, no loss is

observed until 8ms period, because the source message rate (1/5ms=200Hz) is greater

than the rate of all the tasks, and they are all running with the same RMS scheduling

policy. However, when procThread runs in Linux it is scheduled earliest-deadline first

according to the SCHED DEADLINE policy. As Quest tasks are scheduled in RMS order

there is a potential priority mismatch, hilighting the importance of correctly setting task

periods for multi-domain task models.

4.3.2 Case Study 1: CAN Gateway

A centralized VMS needs a CAN Gateway to access the various CAN buses and distribute

messages to host tasks spanning different domains. DriveOS’s CAN Gateway is shown as
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a ModelMap Simulink model in Figure 4.9.

Figure 4.9: Model of a CAN Gateway

As before, CAN messages are read via CAN0 in the Quest domain (Domain 1) and for-

warded to the Linux domain (Domain 2) by a canReader subsystem. A canWriter

subsystem receives CAN messages from Linux to be sent out via CAN1. Unlike the pre-

vious benchmark model, there are multiple subsystems in Linux to process different cate-

gories of CAN messages based on their CAN IDs. Figure 4.9 shows N Linux subsystems

(forwarder{1. . .N}) where N = {1, 2, 4, 8} in our experiments. Each forwarder

Linux subsystem is connected to two inter-task synchronous channels: one is to receive

CAN messages from canReader, another is to send CAN messages to canWriter. If a

different Linux application wants to receive (or send) a message of any particular CAN ID,

it has to request it from the specific Linux forwarder subsystem of the CAN Gateway.

For example, Instrument Cluster and In-vehicle Infotainment applications in DriveOS re-

quest CAN message transfers via specific Linux forwarder subsystems. For the E2E

delay overhead of the CAN Gateway, forwarder{1. . .N} pass through the CAN mes-

sages from their incoming inter-task channel (from canReader) to the outgoing channel

(to canWriter).
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The syncNWRead block in canWriter is used to read from inter-task channels,

without busy-waiting when a buffer is empty. Experiments show that syncNWRead sig-

nificantly improves the E2E delay. syncNWWrite blocks are not used in canReader,

as the Linux subsystems keep the inter-domain communication buffer free by reading out

messages at a suitable rate.
Table 4.2: Budgets and Periods for CAN Gateway Case Study

Subsystem Budget (µs) Period (µs) Util. (%) # of Threads
Domain 1

canReader 200 2000 10% 1
canWriter 300 1000 30% 1

Domain 2
forwarder{1–8} 6400–800 8000 (fixed) 80%–10% 1-8

4.3.2.1 Result Analysis

Table 4.2 shows the budgets and periods of all the CAN Gateway tasks. The E2E delays are

plotted in Figure 4.10 against increasing numbers of Linux forwarder threads, keeping

their total utilization at 80%. For example, if two forwarder threads are executed, then

each of them has 40% utilization. The E2E delays in Figure 4.10a exhibit low jitter and

remain under the target bounds in all cases. This shows that ModelMap’s CAN Gateway

is able to handle multiple Linux threads in a DriveOS VMS system.
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Figure 4.10: CAN Gateway Case Study

In other experiments, syncNWReads are replaced with syncRead blocks in the
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canWriter subsystem. Figure 4.10b demonstrates that the polling syncRead block

increases the E2E delay sharply as the number of threads increase. syncNWRead blocks

are important for a scalable CAN Gateway as the busy-waiting times on synchronous

channels are prohibitively large with more threads.

4.3.3 Case Study 2: Automotive HVAC Control

In this study, our electric car’s existing HVAC controller, running on a MotoHawk ECU, is

ported to DriveOS using ModelMap Simulink blocks. The HVAC Simulink function-call

subsystem is connected to a threadSetup block. threadSetup configures the HVAC

subsystem to run in the Quest domain with 0.5ms budget and 5ms period. The HVAC

subsystem communicates with the Linux domain to save settings in persistent storage for

when the vehicle is restarted. Cross-domain communication is omitted in this study, as it

has been covered by prior experiments. Instead, the functional and timing correctness of

the HVAC control is investigated.

The HVAC control receives input signals via 18 CAN IDs and sends the output signals

via 7 additional IDs. CAN I/O is via two inter-task communication channels with the CAN

Gateway mentioned above. The HVAC control avoids waiting on any CAN IDs by using

syncNWWrite and syncNWRead blocks for message transfers. The CAN Gateway

canReader and canWriter threads are set to 0.2ms budget and 4ms period.

The HIL outputs of the HVAC model after its deployment in DriveOS are compared

with the MIL outputs in Simulink, using CAN data traces from our electric car. Every

CAN input message is tagged with a unique and monotonically increasing integer Tag ID,

which is passed through to the HVAC control’s output CAN messages. The HIL and MIL

signal values in the HVAC control are checked to see that they match for all Tag IDs. Due

to space limits, the HIL and MIL Driver Temperature signal outputs are shown over 30

seconds in Figure 4.11. For Tag IDs 756 and 762, driv temp is respectively 1 and 2 in
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Figure 4.11: HIL and MIL: Driver Temperature Signal with Tag IDs
both MIL and HIL simulations. This is observed for all the Tag IDs and signals. The time

difference on the x-axis is the DriveOS system and HVAC control overhead and contributes

to the signal reaction time. Reaction times for all the signals in the HVAC control are in

the similar range of 160–180 ms, which is deemed acceptable for our vehicle.

4.3.4 System Overheads

The ModelMap framework and nested binary overheads are measured with a series of

microbenchmarks. All measurements are taken 20 times, and an average is presented. The

x86 RDTSC instruction is used for timing measurements, having an overhead of 0.04µs or

around 96 clock cycles, which is subtracted from all delays.

Table 4.3 presents the overheads of the ModelMap Simulink blocks in DriveOS. The

threadSetup block takes more time in Quest than it takes in Linux, because Quest

has to create a sporadic server abstraction for RMS [SSL89, DLW11]. The creation and

connection to an inter-task communication channel make expensive VMExit [RKLM17,
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Table 4.3: System Overheads for the DriveOS Simulink Blocks

Simulink Block
Time (µs)

Linux Quest
threadSetup 33 190
channelCreate{Sender,Receiver} 5722 5486
channelConnect 5699 5448
(a)syncRead/Write 0.01-0.03 0.01-0.03
canChannelSetup - 18490
canRead/Write - 1

SW21] operations to the underlying hypervisor and take more time than reading/writing

to the memory-mapped channels. CAN channel setup takes 18ms to configure the transfer

rate of the USB-CAN interface. These blocks are only applied in an initial setup phase

without significant runtime costs.

Nested Binary Measurements A nested binary’s size is the sum of all individual bina-

ries and 14-bytes of metadata per binary. Table 4.4 presents the overheads of executing a

nested binary. Quest only supports static binaries for fast and predictable runtime, so they

are typically larger than Linux dynamically-linked binaries.

Table 4.4: Nested Binary Overheads

Operation Time (ms)
Extracting an individual binary from a nested binary 0.16
Forking a process via memory in Linux 0.11
Sending ˜300KB binary from Linux to Quest 7.13
Receiving ˜300KB binary in Quest and forking it 184



Chapter 5

End-to-end Scheduling of Real-time Task

Pipelines in Multiprocessors

Real-time embedded and cyber-physical systems are amassed with examples of task

pipelines where a series of tasks are connected by data-buffers. In the automotive domain,

a sensory input is passed on to a pipeline of processing and control tasks that activate an

actuation output. Such time-critical systems benefit from a real-time task pipeline model.

As multiprocessor and multicore machines are being increasingly used in embedded appli-

cations, scheduling real-time task pipelines on multiprocessors needs critical investigation.

Task pipelines, or task chains, or cause-effect chains have received increased atten-

tion in recent research work [GCU+21, KBS20, CKK20, DBCC19, KBS18, SE16], partly

because of their active usages in well-known software packages like ROS [CBLB19,

TFG+20]. Although real-time task pipelines have long been studied [FR97, LA09b,

LA09a], the application of constraints on a pipeline has received little atten-

tion [DZDN+07]. Constraints on a pipeline of periodic tasks ensure that the end-to-end

properties of a pipeline are guaranteed. However, finding schedulable task runtimes and

periods to satisfy the end-to-end constraints is an NP-hard problem [DZDN+07]. The tra-

ditional solvers are not convenient to be used because of their slow runtimes. They are

also unsuitable in runtime scheduling, where tasks and pipeline may dynamically appear

in a real-time system.
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This paper presents a heuristic constraint solver algorithm for real-time task pipelines,

CoPi [SW22], to derive the runtime budgets and periods of individual pipelined tasks from

a list of supplied task budgets. CoPi works with two pipeline constraints: the worst-case

end-to-end (E2E) delay and loss-rate. The worst-case E2E delay is the maximum time

interval between the first time data appears at the first task of a pipeline, and the first time

a corresponding output is produced at the last task of the pipeline. The worst-case E2E

loss-rate is the number of input messages to the pipeline that do not have a corresponding

output with respect to the number of input messages to a pipeline over the period of its

first task. As CoPi treats pipelined tasks as asynchronous and independent tasks, data

might be lost between two communicating tasks if a producer overwrites its output before

a consumer has read it. The loss-rate captures how many input messages have no effect

at the end of the output of a task pipeline. In addition to these constraints, CoPi uses the

rate-monotonic scheduling (RMS) algorithm to schedule the tasks and the RMS utilization

upper bound as another constraint.

The main idea behind CoPi is to get rid of the unnecessary delay and message losses

in a pipeline. In previous work [GSS95, FRNJ08], tasks are released at some offsets, or

task precedence relations are created, to mitigate the data dependency between communi-

cating tasks. CoPi finds the suitable task runtimes and periods so that no timing and data

dependencies occur at runtime between the communicating tasks.

Figure 5.1 shows a small example where CoPi meets the E2E delay upper bound by

Figure 5.1: CoPi Period Derivation: Above pipeline has an end-to-end delay upper bound constraint of 100
time units. In the simplest case, CoPi divides the delay by (number of tasks + 1) [assuming input is

available at arbitrary time. If input is only available at the beginning of A’s period, then the upper bound
could be tightened to 80 time units]. C and T are respectively the runtime budget and period of a task.
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assigning suitable periods to the pipelined tasks. The example also meets the RMS utiliza-

tion bound requirement. However, a tighter upper bound on the E2E delay could violate

the RMS bound, and CoPi needs to find another set of appropriate task runtimes and peri-

ods. CoPi tunes the individual task runtimes and periods so that E2E delay and loss-rate

are under their upper bounds, while the total utilization does not cross the RMS bound.

As CoPi meets the E2E delay and loss-rate guarantees of a pipeline, the asynchronous

tasks are scheduled without any timing or data dependencies between each other. We lever-

age this feature of CoPi to map the tasks of multiple pipelines to a multiprocessor system.

Figure 5.2 summarizes this main idea. We use the Worst-fit Decreasing (WFD) heuristic

to map tasks to processors and also incorporate runtime task migration and scheduling

parameter optimization strategies to admit dynamically appearing pipeline.

Figure 5.2: CoPi converts a task pipeline to a set of independent and asynchronous tasks. A four-slot
asynchronous buffer [Sim90] is used between a pair of communicating tasks. The tasks are then mapped to

a multiprocessor system.

As more real-time systems support dynamic environments such as object detection in

autonomous driving [HCKK20], supporting pipeline scheduling at runtime is necessary in

uniprocessor and multiprocessor architectures. Implementing a complete MINLP solver is

difficult and sometimes infeasible in an OS-level scheduler. Therefore, our proposed CoPi

heuristic algorithm and its use in multiprocessors are useful for practical implementation
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in the future.

This chapter makes the following contributions:

1. We formally present the problem of finding suitable runtime budgets and periods of a

pipeline of periodic tasks, under two pipeline constraints (E2E delay and loss-rate), and

an utilization bound constraint.

2. We propose and analyze a heuristic constraint solver algorithm, CoPi, to satisfy all the

constraints.

3. We demonstrate the usefulness of CoPi by using it in a multiprocessor scheduling algo-

rithm and augment it by runtime task migration and pipeline scheduling optimization

strategies to map dynamic pipelines.

4. We evaluate CoPi against open-source Mixed-integer Non-linear Programming

(MINLP) solvers such as GEKKO [BHMH18], scipy [sci22] and pyomo [HWW11,

BHH+21] with simulated task pipelines. The artifacts are available on https:

//github.com/sohamm17/pipe schedule. We show that CoPi performs sig-

nificantly better, an order of magnitude at the highest, in runtime, and comparably in

pipeline acceptance ratio (ratio of the number of schedulable pipelines by a solver and

the total number of pipelines) for randomly generated pipelines, with respect to other

solvers. We have also tested CoPi with tasksets from the WATERS 2015 workshop

paper [KZH15] and observe similar performance as noticed in randomly generated

pipelines. Moreover, simulation experiments for multiprocessor scheduling demon-

strate CoPi’s usefulness in maximizing processor utilization and minimizing runtime

task migrations. Finally, CoPi’s derived task budgets and periods of a pipeline are

shown to satisfy the end-to-end latency and loss-rate in DriveOS.

The next section describes the system model. Then, Section 5.2 formally defines the

https://github.com/sohamm17/pipe_schedule
https://github.com/sohamm17/pipe_schedule
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pipeline constraints and the problem of finding schedulable task periods and budgets of a

pipeline. Section 5.3 describes and analyzes CoPi. Section 5.4 explains the multiprocessor

scheduling algorithm using CoPi and two pipeline acceptance improvement techniques.

An evaluation with simulated task pipelines is presented in Section 5.5.

5.1 System Model

In this section, we define the task, pipeline and scheduling models in the system.

5.1.1 Task Model

A task τ in the system is a two-tuple (C, T ) and asynchronous. This means that a task does

not wait or block on another task for a resource. Every task has two four-slot asynchronous

buffers [?] for its input and output and works with the most recent available data. The

definitions of C and T are following:

• C: the worst-case runtime budget or capacity of a task to read a message (or data-unit)

from its input buffer, process the data and write a message (or data-unit) to its output

buffer. This is extensible to inputs or outputs of more than a single data-unit in a four-

slot buffer.

• T : the period and deadline of an implicit-deadline periodic task. In every new period, τ

works on new data, and generates a unique output.

C is the initial runtime budget to process a single data-unit by a pipelined task. Later,

we show how our heuristic constraint solver algorithm CoPi adjusts the final allocated

budget using C to meet the end-to-end constraints.
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5.1.2 Pipeline Model

A pipeline P is represented by an ordered set of periodic tasks: S = {τ1, ..., τN}. The

cardinality of S is N . ∀τi, τj ∈ S, i < j implies that data flows from τi to τj . Without the

loss of generality, we consider unidirectional pipelines without cycles.

5.1.2.1 Overview of Pipeline Constraints

We explain the pipeline constraints formally in Section 5.2. We provide a high-level

overview of them below:

• E: the worst-case end-to-end latency or delay of a pipeline i.e., the maximum time a

single message takes from the input to the output of a pipeline. The input appears at any

arbitrary time for the first task τ1 of a pipeline.

• L: the end-to-end loss-rate i.e., the number of input messages that do not have a cor-

responding output message, for every input message to the pipeline, over the period of

its first task. It is expressed as a fraction or a percentage. As the tasks work with asyn-

chronous buffers, a certain message might be overwritten and lost due to more than one

consecutive writes by a producer task before a read by a consumer task. L captures how

many messages are lost per input message.

5.1.2.2 Communication Model

A task communicates with another task with a message or data unit. In practice, a message

is either a sensor input like IMU data, or actuator outputs like steering control, or processed

data in between inputs and outputs. In the automotive and factory automation industry,

messages are also called labels [KZH15].
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The tasks in a pipeline communicate with each other following an implicit communi-

cation model [HDK+17]. Therefore, a message is read from a shared input buffer at the

beginning of a job of a task, and used throughout the task before writing to a shared output

buffer. This ensures that a single and consistent copy of a message is used for a single job

invocation of a task.

Simpson’s four-slot algorithm [?] is used to exchange data between a pair of commu-

nicating tasks via a register-based fully asynchronous buffer. In this algorithm, two pairs

of slots are maintained separately for a reader and a writer. The writer uses two control

bits to indicate which pair and slot are being most recently written. The reader uses an-

other control bit to indicate which pair it is reading. The algorithm shows that only four

slots are enough for a reader and a writer to communicate asynchronously between each

other [?, Rus02].

τ1, the first task of a pipeline, is the source task. τ1 = τsrc. τN , the last task of a

pipeline, is the sink task. τN = τsink. τ1 does not wait or block for its input data because

we assume that an input is always available for τ1. It is realistic since the source generally

reads from a sensor input or digital media. In absence of new input data, the source task

sends the recent available data [?]. The same assumption applies for the output of a sink

task.

5.1.3 Scheduling Model

The system schedules all the tasks using the rate-monotonic scheduling (RMS) algo-

rithm [LL73]. We assume that each periodic task τi, running in a sporadic server abstrac-

tion [SSL89] with a processor capacity reserve [MST93], will have a maximum runtime of

Ci time-units in every Ti time-units, as it is implemented in an RTOS like Quest [DLW11].

We choose the RMS algortihm because it is a fixed-priority scheduling algorithm with low
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runtime overhead, and many popular RTOSs already support it [B+08, BS14, DLW11].

Each task gets a priority assigned by the RMS algorithm. If two tasks of the same

pipeline have the same periods, then the earlier appearing task is given higher priority. In

other words, prio(τi) > prio(τj), if i < j and Ti = Tj . prio(τi) is the priority of task

assigned by RMS.

If a task has already finished its work for a job invocation, it yields and does not start

its next job until next period. This ensures that a single job invocation of a task does not

overwrite its already written output in an asynchronous communication. Moreover, the

fixed execution time tightly bounds a pipeline’s end-to-end latency [GCU+21].

5.2 Pipeline Constraints

We consider constraints on the two pipeline parameters and on the total task utilization.

Two pipeline parameters, end-to-end delay and loss-rate, are computed from the ordered

taskset S. We first discuss a computational analysis of the parameters, and then present

the constraints on them.

5.2.1 End-to-end Delay (E) Computation

The worst-case end-to-end delay of a pipeline is the maximum time for a message to appear

at τsrc and emit from τsink. It is also known as the maximum reaction time [FRNJ08] in a

cause-effect chain [BDM+16a, AUT17].

Davare et al. presented the first but conservative upper bound on the worst-case end-to-

end delay for a pipeline of periodic tasks with arbitrary budgets and periods [DZDN+07].

If Ri is the worst-case response-time of τi, then the worst-case end-to-end delay is the
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following:

E =
N∑
i=1

Ti +Ri (5.1)

In the above equation, Ri is recursively calculated by initially estimating to be equal to the

task period Ti for each task τi [JP86]. As Equation 5.1 is a recursive equation, the time-

complexity of computing the equation depends on the wanted precision on E. Response-

time calculation for fixed-priority scheduling is known to be NP-hard [ER08]. Never-

theless, a bounded computation time is preferred in a runtime task scheduling algorithm.

Therefore, Ri is replaced in the above equation with Ti. If τi is feasibly scheduled, then

Ri is less than or equal to Ti. Therefore, a faster computable version of Equation 5.1 is the

following:

E = 2×
N∑
i=1

Ti (5.2)

In offline or slower design-time analysis, Equation 5.1 is tolerable. For faster analysis and

use in runtime scheduling, Equation 5.2 is preferable.

Dürr et al. tightened Equation 5.1 by considering task priorities between pairs of com-

municating tasks in a pipeline [DBCC19]. They use forward and backward cause-effect

chains to derive a stricter upper bound on E2E delay. After converting the sproadic task

model to the periodic task model as done in a subsequent work [GCU+21], the worst-case

E2E delay of a pipeline considering all the tasks are released at the critical instant [LL73]

(initial release offset is 0), as proved by Dürr et al., is the following:

E ≤ T1 +RN +
N−1∑
i=1

max(Ri, Ti+1 +Ri × I) (5.3)

In above equation, I is Iverson bracket. I = 1, if (i+ 1)th task has higher priority than ith

task. I = 0, otherwise.

As it is done for Equation 5.1 and 5.2, the following equation is a conservative but
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faster computable version of Equation 5.3:

E ≤ T1 + TN +
N−1∑
i=1

max(Ti, Ti+1 + Ti × I) (5.4)

The time-complexity of Equation 5.2 and 5.4 is O(N). Equation 5.2 and 5.4 are useful in

designing a runtime end-to-end pipeline scheduling algorithm. In this paper, Equation 5.4

is used for the uniprocessor pipeline scheduling. For multiprocessor scheduling, Davare

et al.’s Equation 5.2 is used to avoid dependencies on task priorities in a pipeline, as a

pipelined task could be mapped to any processor.

5.2.1.1 Example

Figure 5.3: End-to-end Delay Example

Figure 5.3 shows an example pipeline. The end-to-end delays are 74 and 63, respec-

tively with Equation 5.2 and Equation 5.4, if the tasks are scheduled with RMS. The cal-

culation of Equation 5.4 for the example is the following:

E ≤ 5 + 9 + (max(5, 10 + 5× 0) +max(10, 7 + 10× 1)+

max(7, 6 + 7× 1) +max(6, 9 + 6× 0))

≤ 5 + 9 + (10 + (10 + 7) + (7 + 6) + 9)

≤ 63
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5.2.2 End-to-end Loss-rate (L) Computation

Data loss is an issue in systems involving sensors and actuators [ZZLN09, KXL+13,

GSW20] The end-to-end loss-rate of a pipeline is the number of input messages that do

not have a corresponding output, per input message to a pipeline, over the period of its first

task. Suppose, the total number of input messages per period of the first task of a pipeline

is I , and the number of corresponding output messages for I inputs is O, then loss-rate

is defined by Equation 5.5. If O is greater than or equal to I , then no messages are lost,

and the loss-rate is deemed 0. Loss-rate can also be realized in terms of Feiertag et al.’s

concept of reachability [FRNJ08], where it is the ratio of non-reachable messages to the

total number of input messages per period of the first task of a pipeline.

L =
I −O
I

, if O ¡ I

= 0, if O ≥ I (5.5)

Input (and output) messages are usually generated (and sent) from a sensor (and to an

actuator), associated to an I/O buffer. However, an input may not come from an external

buffer or input device and may just be generated by the source task of a pipeline. In that

case, the generated messages are considered to be the inputs to a pipeline.

To calculate the loss-rate, we assume that the pipelined tasks are feasibly scheduled

using a real-time scheduling algorithm following the scheduling model described in Sec-

tion 5.1.3. For every pair of producer-consumer tasks (τp → τc) in a pipeline, the consumer

could either oversample (Tc ≤ Tp) or undersample (Tc > Tp) its input from its correspond-

ing producer. Based on the relationships between the periods of all the producer-consumer

pairs starting from the source task to the sink task, the end-to-end loss-rate of a pipeline is

calculated. The calculation is explained later in this section.
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5.2.2.1 Sampling Ratio

We define the sampling ratio fτp→τc of a producer-consumer pair (τp → τc) as the num-

ber of output messages of τc per unique input message of τp. According to the task and

scheduling model, a task generates a single message in their runtime budget per period and

retires until its next invocation. Therefore, fτp→τc is calculated from the producer’s period

divided by the consumer’s period:

fτp→τc =
Tp
Tc

(5.6)

Then, the loss-rate of a producer-consumer pair is (1− fτp→τc) = (1− Tp
Tc

), if fτp→τc ≥ 1,

0 otherwise. Examples are given later in the section.

Oversampling In case of an oversampling consumer (Tp ≥ Tc), the data from the pro-

ducer will be overrepresented in the output by the consumer. For example, consider

τp = (Cp = 2, Tp = 40), τc = (Cc = 1, Tc = 10). τp runs for 2 time-units in every

40 time-units and reads, processes, and writes a single input message. τc does the same

in 1 time-unit in every 10 time-units. Therefore, τc will emit the same output 4 times for

a unique input of τp. Hence, the sampling ratio is Tp
Tc

= 4. Therefore, the oversampling

ratio is: Oτp→τc = fτp→τc = Tp
Tc
≥ 1. The loss-rate is 0 in this case as sampling ratio is

more than 1. This means that no messages are lost in this producer-consumer pair.

Undersampling The case of an undersampling consumer (Tp < Tc) is more nuanced

because data might be lost. The data from a producer might be overwritten before

a consumer has read it, as the consumer has larger period. For example, consider

τp = (Cp = 1, Tp = 10), τc = (Cc = 5, Tc = 40). τp takes 1 time-unit in every 10

time-units to read, process and finally output a message for τc. τc takes 5 time-units in
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Table 5.1: Sampling Ratio Calculation Rules

Rules to Calculate Lower Bound on the Sampling Ratio of a resultant pipeline Py after adding a new τnew

task to a pipeline Px.
Rule Px(τ1 → ...→ τNx) τnew Lower Bound on new Sampling Ratio (fy)
1 Undersampled Oversampled fx
2 Undersampled Undersampled

fx ×
TNx
Tnew

3 Oversampled Oversampled
4 Oversampled Undersampled

every 40 time-units to read a single τp’s message, process and write its own single output

message. Therefore, τp will run 4 times and produce 4 unique messages in 40 time-units.

However, τc only runs once in 40 time-units and works with only 1 of 4 messages pro-

duced by τp. Therefore, the sampling ratio is Tp
Tc

= 1
4
. Therefore, undersampling ratio:

Uτp→τc = fτp→τc = Tp
Tc
< 1. Hence, the loss-rate here is (1− 1

4
) = 3

4
or 75%.

Pipeline Sampling Ratio Let’s consider a pipeline Px = {Sx}. Subscript x is used

to distinguish a pipeline. Px has two communicating tasks (Sx = {τ1, τ2}, Nx = 2) i.e.,

a single producer-consumer pair (τ1 → τ2). The sampling ratio is fx = T1
T2

. The whole

pipeline is oversampled if fx ≥ 1 and undersampled if fx < 1.

Now, consider that Px is extended by adding a new task τnew at the end of Px. A

new pipeline Py is thus formed whose ordered taskset Sy is {τ1, τ2, τnew}, and length is

Ny = Nx + 1 = 3. τnew could be oversampling or undersampling compared to the last

task in Px, τ2 or τNx .

We want to calculate a lower bound on the sampling ratio to derive an upper bound

on the loss-rate. We define 4 rules to calculate a lower bound on the sampling ratio of a

pipeline. The rules are summarized in Table 5.1 and proved below:

Rule 1 If a pipeline Px is undersampled, adding an oversampling task whose period

is smaller than the period of Px’s last task τNx , does not change the lower bound of the

resultant pipeline’s sampling ratio.
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Proof. Let’s take an undersampling pipeline Px. Its sampling ratio is fx = B
A

. It

produces B output messages for every A input message to a pipeline. B < A.

A new oversampling τnew task is added to Px to form pipeline Py. Therefore, τnew’s

period is lesser than or equal to the period of Px’s last task τNx . Tnew ≤ TNx .

For every new input message to τnew, OτNx→τnew =(
TNx
Tnew

≥ 1) number of out-

put messages are produced by τnew. Therefore, for every B outputs from Px to τnew,

(B ×OτNx→τnew) outputs are produced by τnew.

However, (B − A) number of messages are already lost in the pipeline Px. The over-

sampling task τnew cannot recover those messages. Therefore, (B×OτNx→τnew) messages

just represent the oversampled messages produced by task τnew. The number of unique

output messages per input message of the pipeline remains same. Therefore, Px’s sam-

pling ratio (fx) remains the lower bound of Py’s sampling ratio. �

Example Consider the example given in Figure 5.4a. Px = {Sx = (τ1, τ2)}. Nx = 2.

Py is formed by adding τ3 to Px. τ1’s input is given at the left most side. Each line

represents a unique message with from 1 to 4 as the unique IDs of the messages. τ1 reads

one message in its single job invocation, increases the ASCII value of the input and writes

to its output buffer. τ2 and τ3 reads an input message and just passes through to the output

buffer.

Px’s sampling ratio fx is T1
T2

= 0.5. We can see that τ2 emits 1st (B) and 3rd (D) message,

although it receives B,C,D,E as inputs. τ2 emits one out of every two input messages.

Now, we add τ3 after τ2. τ3 is oversampling with respect to τ2, exemplifying Rule 1. As

τ3 runs twice frequently than τ2, it replicates one input message two times in its output.

Therefore, it emits B,B,D,D for B,D inputs coming from τ2. However, the repetitions

do not recover the lost messages A,C. Therefore, the lower bound of the sampling ratio of

the new pipeline Py remains the sampling ratio of pipeline Px. In this case, that is 0.5.
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(a) Rule 1 (b) Rule 3

Figure 5.4: Examples of Pipeline Sampling Ratio Calculation

Rule 2 If an undersampling task τnew is added at the end of an undersampled pipeline

Px, then the resultant sampling ratio is lower bounded by the undersampling ratio of Px,

fx, multiplied by the undersampling ratio of the last task of Px and the new task .

Proof. Let’s take the same undersampling pipeline Px from Rule 1. fx = B
A

and

B < A. An undersampling τnew task is added to Px to form pipeline Py. Therefore, τnew’s

period is greater than the period of Px’s last task τNx . Tnew > TNx .

For every new input message to τnew, TNx
Tnew

= UτNx→τnew(< 1) outputs are produced by

τnew. Therefore, for every B inputs to τnew, only B × UτNx→τnew messages are produced.

Hence, the sampling ratio of the newly formed pipeline Py: fy =
B×UτNx→τnew

A
= fx ×

TNx
Tnew

. fy provides the lower bound for the new pipeline Py. �

Example Consider the same example given in Figure 5.4a but with period of τ3 = 400.

In this case. τ3 emits only the 1st (B) message. Therefore, the sampling ratio is 0.5 × 200
400

= 0.25.

Rule 3 If an oversampling task τnew is added at the end of an oversampled pipeline Px,

then the resultant sampling ratio is lower bounded by fx multiplied by the oversampling

ratio of the last task of Px and the new task.

Proof. Let’s consider an oversampling pipeline Px. fx = B
A

and B ≥ A. An oversam-

pling task τnew is added to Px to form pipeline Py. Tnew ≤ TNx . For every B outputs from

Px to τnew, (B ×OτNx→τnew) outputs are produced by τnew.
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Therefore, the sampling ratio of the newly formed pipeline Py: fy =
B×OτNx→τnew

A
=

fx × TNx
Tnew

. fy is the lower bound on the sampling ratio of Py. �

Example Consider the example in Figure 5.4b which is similar to Figure 5.4a but with

different periods. The sampling ratio after adding τ3 at the end of Px(Sx = {τ1, τ2}) is 4.

Here, 4 accurately represents the oversampling ratio.

Rule 4 If an undersampling task τnew is added to an oversampled pipeline Px, the resul-

tant sampling ratio is fx multiplied by the undersampling ratio of Px’s last task and the

new task .

Proof. Let’s consider the same oversampling pipeline from the above rule, Px. fx =

B
A
≥ 1. An undersampling task τnew is added to Px to form pipeline Py. Tnew > TNx . For

every B input messages to τnew, it produces only (B × UτNx→τnew) messages that is less

than B number of messages, as UτNx→τnew < 1. We already know that Px produces fx

output messages for every single input to it.

Therefore, the sampling ratio of the newly formed pipeline Py: fy = fx×UτNx→τnew =

fx × TNx
Tnew

. fy also provides the lower bound on the sampling ratio of Py. �

Example Consider the example in Figure 5.4b but with T3 = 200. The sampling ratio

between τ2 and τ3 is 50
200

= 1
4
. Therefore, τ3 is able to output only 1 message for every 4

input messages coming from τ2. So, it will only output B in the example. Therefore, the

lower bound on the full pipeline’s sampling ratio is fx× 1
4

= 2× 1
4

= 1
2
. As we can see that

two messages (A,B) were input to the pipeline, but only 1 message was output.

Following the above rules, the sampling ratio of a pipeline could be recursively derived

by calculating the sampling ratio from the source task of a pipeline until the sink, treating

a next task in a pipeline as τnew. The first producer-consumer pair is considered a pipeline
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Px. Then, a new task is added at the end of Px pipeline, and a new sampling ratio is

calculated. By the end of the pipeline where there are no more tasks, end-to-end sampling

ratio is computed.

5.2.2.2 Upper Bound on Loss-rate from Sampling Ratio

The upper bound on a pipeline P ’s loss-rate is expressed in terms of its sampling ratio f

as follows:

L = 0, if fP ≥ 1

≤ 1− fP , if fP < 1 (5.7)

5.2.3 Formalization of Pipeline Constraints

Equations 5.4 and 5.7 show the upper bounds of the end-to-end delay and loss-rate of

a pipeline. A task’s runtime budget C to read, process and write 1 message is usually

determined by performing a worst-case execution time (WCET) analysis [WEE+08]. A

pipeline is then constructed by chaining up these periodic tasks. End-to-end delay and

loss-rate constraints are applied on a pipeline to guarantee a certain level of quality of

service. The unknown variable here is the periods of the individual tasks of a pipeline, and

thus, the problem is to find the task periods. The constraints are summarized below:

1. E should be upper bounded by a constant EUB, meaning that the worst-case end-to-

end delay computed from Equation 5.4 should not exceed EUB.

2. L should be upper bounded byLUB, meaning that the loss-rate computed from Equa-

tion 5.7 should not exceed LUB.

3. The total pipeline utilization should be within a constant upper bound of UUB. This
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constraint comes from the scheduling model, in our case, the RMS bound (See Sec-

tion 5.1.3).

Constraint 1, 2 and 3 for a pipeline are respectively formalized in Equation 5.8, 5.9,

and 5.10

T1 + TN +
N−1∑
i=1

max(Ti, Ti+1 + Ti × I) ≤ EUB (5.8)

L ≤ LUB (5.9)∑
∀τi∈S

Ci
Ti
≤ UUB (5.10)

5.2.4 Problem Statement

Given a list of pipelined tasks’ budgets (Ci,∀τi ∈ S) and a set of constant upper bounds

(EUB, LUB, UUB) as constraints, the challenge is to find suitable T1, T2, . . . , TN , such that

the constraints are satisfied,

To be precise, Equation 5.8, 5.9 and 5.10 need to be satisfied to find a set of suitable

periods. This is a constraint programming problem that is in the class of integer nonlinear

programming problems, assuming integer task periods. It is a nonlinear programming

problem because of Equation 5.10 where the period is in the denominator. The problem is

known to be NP-hard [HKLW10].

5.2.4.1 Budget Adjustment

Until now, we have considered the task runtime budget to be a constant C in the optimiza-

tion problem. This requirement could be relaxed by allowing increment of task budgets in

integer multiples of C. If a task’s budget is decreased from the initial budget C, it would

be unable to read, process and write 1 message or data-unit, assuming that a fragment of 1

data-unit is invalid.
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When a task τ ’s budget is increased from C to MC (M is an integer constant greater

than 1), it means τ processes M messages in its single job invocation. τ ’s input and output

buffer sizes are also increased to pass M messages in each slot of the four-slot buffer.

Additional Constraint The constraints for the budget adjustment are the following:

Mi ≥ 1 (5.11)

∀τi∈S FCi = Mi × Ci (5.12)

FCi is the final allocated runtime budget of τi. Mi is called a budget multiplier.

Our heuristic constraint solver algorithm CoPi uses the budget adjustment mechanism

to bound the other pipeline constraints. The details are in Section 5.3.2.2. However, these

budget adjustment constraint equations are not supplied to the open-source solvers, by

default. Therefore, they use only Equations 5.8, 5.9 and 5.10, unless otherwise specified.

Loss-rate Recalculation after Budget Adjustment Sampling ratio formula is extended

from the Equation 5.6 to accommodate the budget adjustment by CoPi:

fτp→τc =
Tp
Tc
× Mc

Mp

(5.13)

Mc and Mp are respectively the consumer and producer budget multipliers from Equa-

tion 5.11. New loss-rate is calculated from the adjusted sampling ratio.

5.2.4.2 MINLP Solvers

We have modeled the pipeline constraints in three open-source Mixed-Integer Non-

Linear Programming (MINLP) solvers in Python: GEKKO [BHMH18], pyomo [HWW11,

BHH+21] and scipy [sci22]. We compare their performances to our heuristic constraint
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solver CoPi’s performance in terms of the number of accepted task pipelines in Sec-

tion 5.5. We have also considered GNU Linear Programming Kit [GNU21], Google-OR

Tools [Goo21b] and other solvers, but they lack integer nonlinear programming features,

and the above ones suffice for the purpose of this work.

5.3 CoPi: Pipeline Constraint Solver Heuristic

This section explains our heuristic constraint solver algorithm for uniprocessor scheduling.

5.3.1 CoPi’s Objective and Approach

The primary objective of CoPi, our constraint solver heuristic for end-to-end scheduling

of a real-time task pipeline, is to avoid unnecessary delay and data loss among the com-

municating tasks. Once the data-dependencies between the pipelined tasks are handled by

tuning the task parameters, all the tasks run independent of each other without waiting for

job release and completion times [BDM+16a, CKK20].

Given the initial task budgets, the upper bounds of the pipeline parameters (E2E de-

lay and loss-rate) and the RMS utilization bound, CoPi derives the task periods and new

runtime budgets. Gerber et al. also proposed a similar approach of deriving task periods,

offsets and other parameters from the end-to-end constraints, albeit on task precedence

relations [GSS95]. We utilize the core idea of deriving suitable budgets and periods from

the end-to-end requirements, so that the pipelined tasks could be independently executed.

For a multiprocessor system, runtime task migrations are feasible because of CoPi’s

conversion of pipelined tasks to independent asynchronus tasks (see Figure 5.2). Although

process to core mapping and migration should also consider cache, memory and other

microarchitectural properties, it should be handled at the system implementation level,

and needed properties could be added to an extended task and scheduling model.
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5.3.2 CoPi Heuristic Algorithm

Pseudocode of CoPi is provided in Algorithm 5.1. It finds the suitable periods of a pipeline

of N tasks under all the constraints constraints (Constraint 1, 2 and 3 from Section 5.2.3).

CoPi takes the initial task runtime budgets (C in the model and budgets in Algo-

rithm 5.1) and the desired upper bound on the end-to-end delay and loss-rate (EUB and

LUB in the model, and e2e ub and lr ub in Algorithm 5.1) as its inputs. budgets are

given in the same order as in the ordered taskset S in the pipeline model. α and β are

CoPi’s internal tuning parameters that are also taken as inputs and explained later.

5.3.2.1 Stage 1

Line 8–11 in Algorithm 5.1 show Stage 1. CoPi starts by setting all the task periods to be

the same in Line 9: eq period = e2e ub
N + 1 , where N is the pipeline length. By trying to

assign the same equal period to all the tasks, CoPi tries to eliminate any loss between the

pipelined tasks. Thus, any loss-rate upper bound constraint is satisfied, as loss-rate is 0 for

equal task periods.

To satisfy the end-to-end delay constraint, e2e ub is divided by (N + 1) instead of N .

As per the scheduling model in Section 5.1.3, the earlier appearing task in a pipeline is

given higher priority in RMS algorithm for tasks with equal periods. Therefore, the upper

bound on end-to-end delay following Dürr et al.’s Equation 5.4 is: E ≤
(

(N + 1) ×

eq period
)

[DBCC19]. Thus, the end-to-end delay constraint is implicitly satisfied by the

choice of equal task periods of ( e2e ub
N+1

): E ≤
(

(N + 1)× eq period
)

= e2e ub.

As both the pipeline constraints are satisfied, CoPi checks the schedulability of the task

pipeline with the RMS utilization bound constraint in Line 10.

utilization bound test(taskset) is briefly the following:
(∑N

i=1
Ci
Ti
≤ n ×

(2
1
n − 1)

)
.
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Algorithm 5.1 CoPi Pipeline Constraint Solver Algorithm

1: Input: budgets[N ] - Budgets of N Pipelined Tasks in an ordered sequence from source to destination
2: Input: e2e ub - upper bound of end-to-end delay
3: Input: lr ub - upper bound of end-to-end loss-rate
4: Input: util ub - upper bound on processor utilization. Used if less than the RMS utilization bound.
5: Input: α - The multiplicative scaling factor
6: Input: β - The divisive scaling factor
7: Output: If schedulable: an ordered taskset with budgets and periods, else: not schedulable.
8: // Stage 1

9: eq period = e2e ub
N + 1 ; taskset = [(b, eq period) for b in budgets]

10: if utilization bound test(taskset) then return taskset
11: end if
12: // Stage 2
13: scaled period = α× eq period; taskset = [(b, scaled period) for b in budgets]
14: while True do
15: one pipe changed = False
16: for i = 0 to N − 2 do
17: producer = taskset[i]; consumer = taskset[i+ 1]
18: if producer.budget < producer.period

β and consumer.budget× β < consumer.period then

19: producer = (producer.budget,
producer.period

β
)

20: consumer = (β × consumer.budget, consumer.period)
21: if utilization bound test (taskset) then
22: one pipe changed = True
23: if total e2e delay(taskset) ≤ e2e ub and loss rate(taskset) ≤ lr ub

then return taskset
24: end if
25: end if
26: end if
27: end for
28: if not one pipe changed then break
29: end if
30: end while
31: // Stage 3
32: for i = N − 1 to 0 do
33: cur task = taskset[i]; cur budget = cur task.budget; cur period = cur task.period
34: init budget = cur task.init budget
35: while cur budget

β ≥ init budget do
36: cur budget = cur budget

β ; cur period = cur period
β

37: end while
38: taskset[i] = (cur budget, cur period)
39: if utilization bound test(taskset) and total e2e delay(taskset) ≤ e2e ub

and loss rate(taskset) ≤ lr ub then return taskset
40: end if
41: end for
42: return none
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For a large value of e2e ub, Stage 1 itself returns a schedulable pipeline, as the total

utilization of the pipelined tasks would be small. For smaller and tighter values of e2e ub,

CoPi moves on to the Stage 2.

5.3.2.2 Stage 2

Line 12–30 in Algorithm 5.1 show the Stage 2. In this stage, CoPi tries adjusting the task

periods to bring down the total utilization while satisfying the end-to-end delay and loss-

rate constraints. In order to do so, in step 1, it scales up all the task periods by a constant

factor (α) to reduce the total task utilization. However, that increases the end-to-end delay

and violates the constraint. Then in step 2, CoPi considers all the producer-consumer pairs

one by one. It scales down the period of a producer by a constant integer factor (β) and

scales up the runtime budget of a corresponding consumer by the same factor β, in an

effort to bring down the end-to-end delay and keep the loss-rate under constraint.

Rate-matching Heuristic Before explaining Stage 2 in Algorithm 5.1, we explain how

CoPi adjusts the budget and periods. To reiterate from Section 5.2.4.1, when CoPi changes

a task τ ’s runtime budget from C to (β × C), it implies that the task now reads, processes

and writes β number of messages or data-units in a single job invocation.

Consider an example given in Figure 5.5. A pipeline is shown with S = {A,B} and

their initial runtime budgets of 2 and 4, respectively. Imagine after step 1 of stage 2, CoPi

assigns period of 80 to both the tasks. This pipeline is shown at the top of Figure 5.5. The

end-to-end delay of this pipeline is 240, as calculated using Equation 5.4.

Then, CoPi divides the producer A’s period by β and also multiplies the consumer B’s

budget by β, with β=2. The resultant pipeline is at the bottom of Figure 5.5. The end-

to-end delay is reduced to 160 from 240 time units. In the new pipeline, B will consume

2 messages in its single job invocation, with a runtime budget of 8. A will still produce
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Figure 5.5: Period and Budget Adjustment Example

1 message in its runtime because its budget is unchanged. But A’s period is halved. So

it will run twice within a single period of B. Therefore, the capacity of the four-slot

asynchronous buffer is increased to store 2 messages from A. In its single job invocation,

B will now consume those 2 messages. Therefore, the final sampling rate of the pipeline

is still (40
80
× 2

1
) = 1.

By adjusting the budgets and periods, end-to-end latency is reduced while keeping the

loss-rate to 0. Although the total utilization increases, it is already much smaller because

of scaling the period by α. This is the reason CoPi succeeds in scheduling task pipelines

under the constraints.

CoPi enforces that task runtime budgets are never decreased from C, as fraction of a

message is invalid. Also, increments to budgets are only in integer multiples of C.

Explanation of Stage 2 In this stage, CoPi first multiplies the equal period from stage 1

by a factor α (> 1) in Line 13. α is empirically chosen from a range of values and given as

an input to CoPi. Stretching the period by an α factor helps in lowering the pipelined tasks’

total utilization and keeps it under the RMS bound. However, it violates the end-to-end

delay constraint. So CoPi tries reducing the task periods, satisfying the other constraints.
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Starting from the first pair of producer and consumer: producer’s period is divided

by β (> 1) and consumer’s budget is multiplied by β, as long as the periods are greater

than the task budgets (Line 16–20). This reduces the end-to-end latency while keeping the

producer-consumer rate-matched for minimal data-loss.

Moving forward, CoPi checks whether utilization bound test is satisfied in Line 21.

If it passes that constraint, then end-to-end delay and loss-rate constraints are checked in

Line 23. If all the constraints are satisfied, a schedulable pipeline with new budget and

period assignments to its tasks is returned.

If a constraint is violated, the algorithm moves on to the next pair in the pipeline

and repeat the steps until it covers all the producer-consumer pairs in the pipeline. After

completing an iteration of going through all the producer-consumer pairs of a pipeline,

CoPi again starts from the first pair for another iteration in Line 16. If no pair could be

tuned for an iteration, tracked by the one pipe changed boolean variable, CoPi moves on

to stage 3.

5.3.2.3 Stage 3

Lines 31–41 in Algorithm 5.1 show CoPi’s Stage 3. The objective of this stage is to further

reduce the E2E delay, while keeping the total task utilization same and loss-rate under its

upper bound.

In this stage, CoPi scales down the budgets and periods of the tuned consumers of stage

2. The stage starts from the sink or the last task of a pipeline and goes until the source

task. It divides both periods and budgets of a task by β, as long as the budget is more than

or equal to the initial budget of the task to process a single message. In each iteration,

the constraints are checked in Line 39 and if they are satisfied, a feasible task pipeline is

returned. Otherwise, CoPi declares the pipeline unschedulable.
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5.3.2.4 Discussion

CoPi runs Stage 1 only once for a pipeline, and it runs Stage 2 and 3 multiple times with

different α values. In all of our experiments, we fix β = 2 that is empirically chosen,

while we test Stage 2 and 3 with α in a range of 1.01 and 2. Next, we establish a lower

bound on α in Equation 5.14 to minimize runtime overhead in Section 5.3.2.5. The steps

of incrementing α and its higher bound can also be used to control the runtime overhead

of the algorithm.

5.3.2.5 Lower Bound on α

The equal period derived in stage 1 is Teq = EUB

N + 1 . Therefore, the total task pipeline

utilization is
∑N

i=1 .
Ci
Teq

. CoPi moves to second stage because this total utilization is not

under the utilization bound of RMS. So,
∑N

i=1
Ci
Teq

> B, where B = n× (2
1
n − 1).

In step 1 of stage 2, CoPi scales the equal period by α. Therefore, the total utilization

after scaling must be less than or equal to B. Otherwise, CoPi will not be able to adjust

the task budgets and periods in its next steps. So, we can write:

N∑
i=1

Ci
α× Teq

≤ B

N∑
i=1

Ci

α× EUB

N + 1

≤ B

N + 1

α× EUB

N∑
i=1

Ci ≤ B

N + 1

B × EUB

N∑
i=1

Ci ≤ α

N + 1

N × (2
1
N − 1)× EUB

N∑
i=1

Ci ≤ α (for RMS) (5.14)

Equation 5.14 provides a starting value of α to CoPi with the above formula.
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(a) CoPi Example 1 (b) CoPi Example 2

Figure 5.6: CoPi Examples

5.3.3 Examples

Figure 5.6a shows an example iteration of CoPi where it schedules a pipeline of 5 tasks.

The constraints are shown at the top left. The utilization bound is the RMS bound for 5

tasks. We show a successful iteration where α is set to 1.32. The pipeline parameters are

shown on the left at each stage. Their colors indicate if a parameter constraint is satisfied

at a stage (green – satisfied, red – unsatisfied). Figure 5.6b shows another such example

but with 0% loss-rate constraint or no data loss.
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5.3.4 Execution Time Complexity of CoPi

For a pipeline of length N , stage 1 runs in O(N) time. Stage 2 iterates over the length

of a pipeline multiple times, depending on the constraints. Stage 2 starts with a lower

total pipeline utilization and goes up to the RMS utilization bound. Since it divides the

task periods and multiplies the budgets by a constant β, the number of iterations in stage

2 is some constant. It is calculated by a function dependent on logarithm base α of task

budgets, e2e delay upper bound and utilization bound. As all of them are constant, stage 2

approximately takesv O(K×N) (K is some constant,N is length of a pipeline), because

it checks all the producer-consumer pairs in a pipeline.

Finally, stage 3 checks all the tasks in a pipeline and runs in O(N). Tuning every task

in stage 3 also takes similar logarithmic function and could be assumed to be a constant

v O(J). Therefore, stage 2 and 3 together take approximately O((K + J) × N), where

O(K + J) represents the hardness of the constraints.

These stages are run for a limited range of α values. For example, if we test all α

values between 1.01 and 2 with a 0.01 step increment, stage 2 and 3 are then run for 100

times. We could also find a feasible schedule before that. So we assume the total number

of stage 2 and 3 runs to be a constant I . However, the lower bound of α has an inverse

relationship withN . Therefore, the range of α values are higher for a largerN . So, I leans

to v O(N).

CoPi overall takes O
(
I × (K + J)×N

)
, where O((K + J)× I) is dependent on the

constraints. Overall, CoPi’s complexity is linear to quadratic with respect to a pipeline’s

length. Thus, CoPi is a good candidate as a helper heuristic to a scheduling algorithm at

runtime. Section 5.5.2 presents an experimental analysis of CoPi’s runtime overhead.
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5.4 Multiprocessor Pipeline Scheduling

In multiprocessor scheduling, we utilize CoPi’s feature of providing a set of independent

and asynchronous tasks that are chained in a pipeline. Thus, the asynchronous tasks are

free to be mapped to any available processor. Even runtime task migrations are possible,

as there are no data, timing or priority dependencies between tasks after CoPi has derived

the task parameters. We use Equation 5.2 by Davare et al. to derive the upper bound on

the worst-case end-to-end delay, in contrast to Equation 5.8 used for uniprocessor, to avoid

any priority dependencies between the tasks. In this way, a task could be mapped to any

available processor as long as the tasks complete their jobs within their periods. Hence,

CoPi uses the previous two Equations 5.9 and 5.10 from Section 5.2, and the Equation 5.15

given below in this case.

2×
N∑
i=1

×Ti ≤ EUB (5.15)

This multiprocessor pipeline scheduling algorithm demonstrates the benefits and appli-

cation of the constraint solving approach and CoPi. CoPi is coupled with a traditional

and well-known multiprocessor scheduling heuristic for this purpose. Although multipro-

cessor scheduling is an NP-hard problem [HvdVV94], there are well-known heuristics to

map a set of tasks to a number of processors in polynomial time. We use the worst-fit

decreasing (WFD) heuristic. In WFD heuristic, the algorithm maintains a sorted list of the

pipelined tasks based on their utilization values and a sorted list of the processors based

on the available utilization, both in decreasing order. Then, it maps a task from the sorted

task list to a processor from the sorted processor list. After CoPi provides a set of tasks,

the algorithm uses WFD to map a pipeline to the available processors. In addition, the

algorithm implements a few other heuristics to improve the runtime acceptance ratio of

new pipelines, that are explained in Section 5.4.1 and 5.4.2.
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Algorithm 5.2 Multiprocessor Pipeline Scheduling

1: Input: pipeline - Budgets of N Pipelined Tasks in ordered sequence from Source to Destination
2: Input: e2e ub - upper bound on end-to-end delay
3: Input: loss ub - upper bound on loss-rate
4: Input: α - The multiplicative scaling factor
5: Input: β - The divisive scaling factor
6: Output: True, if a pipeline is accepted in the multiprocessor system, else False
7: util ub = get total util from all procs()
8: q pipeline = COPI(pipeline[budgets], e2e ub, loss ub, util ub)
9: if q pipeline is None then

10: Try reducing utilization of an already admitted pipeline.
11: Then go back to Line 7.
12: Do the above for only a limited number of time.
13: end if
14: iter = 0
15: while iter ≤ num core do
16: if WFD FIT(q pipeline) is not successful then
17: // try migration
18: Sort the processors with decreasing order of available utilization
19: for each processor p in the above sorted list do
20: Sort the mapped tasks in decreasing order of utilization in this processor
21: for each task t in the above sorted list do
22: for each processor q among all processors do
23: if t’s utilization ≤ q’s available utilization and p 6= q then
24: unmap t from p and map to q
25: break out of for loop at Line 19
26: end if
27: end for
28: end for
29: end for
30: Increment iter
31: else return True
32: end if
33: end while
34: return False

The algorithm uses a partitioned RMS scheduling for separate processors, where each

processor runs its mapped tasks following the RMS policy. RMS utilization bound [LL73]

is checked for task acceptance to a particular processor. The algorithm tracks each proces-

sor’s available utilization by initially approximating it to 0.69 – the RMS bound for infinite

number of tasks.

The multiprocessor scheduling algorithm is sketched in Algorithm 5.2. An auxiliary

scheduling driver code externally initializes the number of processors and their utiliza-

tions. Then, the driver calls Algorithm 5.2 to map a pipeline with constraints to available
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processors. Algorithm 5.2 takes a pipeline and its constraints as input and returns True if

the pipeline is accepted. Otherwise, it returns False.

Algorithm 5.2 works as follows. It first gets the sum of available utilization in all the

processors in Line 7. This available utilization is fed to CoPi along with a new pipeline’s

task budgets and constraints in Line 8. CoPi either returns a pipeline with schedulable

budget and period assignments, or returns None if the pipeline was unschedulable. For a

schedulable pipeline, the algorithm tries mapping individual tasks to processors. A task is

able to mapped to any available processor, since CoPi generates independent tasks.

Then, the algorithm uses WFD FIT function for the WFD heuristic to map new

pipelined tasks to processors in Line 16. It first determines whether all the pipelined tasks

could be mapped, by checking the individual tasks one by one, before actually mapping

the tasks to processors. Only if it could map all the tasks in a pipeline to the available

processors, it maps them to the processors.

When WFD is not able to map all the tasks, the algorithm tries migrating tasks from

one processor to another in Line 17– 29. The migration strategy is described later in

Section 5.4.1.

Moreover, when CoPi is first called in Line 8, it may not return a feasible schedule

because of not meeting the utilization bound. Such an infeasible schedule may occur

due to unoptimized pipelines already admitted in the system. As the system starts with

more available utilization, CoPi is initially run with a higher and relaxed utilization bound

constraint. So it may have returned unoptimized pipelines because they were already

schedulable with higher utilizations. In such cases, the multiprocessor scheduling algo-

rithm optimizes an admitted pipeline in Line 10–12. The strategy is explained more in

Section 5.4.2.
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5.4.1 Runtime Task Migration

When the multiprocessor scheduling algorithm fails to schedule a new pipeline in its avail-

able processors even after having spare utilization, it explores the possibility of migrating

already mapped tasks to make room for a new pipeline. Line 17– 29 show it in Algo-

rithm 5.2. The algorithm first sorts the processors in decreasing order of available utiliza-

tion. For each processor in the sorted list, it sorts the mapped tasks in decreasing order of

task utilization. It picks a task from this sorted list of mapped tasks, and migrates it to the

first available processor that can accommodate the task.

As soon as a task is migrated, the algorithm tries to schedule the new pipeline with

WFD heuristic. We do this to minimize the number of total task migrations in the system,

because migrations have practical runtime overhead. For a new pipeline, the algorithm

only tries migratingM tasks at most, ifM is the number of total processors. Thus, we limit

the number of migration attempts per new pipeline to bound the time to find a schedulable

mapping.

In summary, we employ task migration to admit more pipelines at runtime by creat-

ing smaller utilization holes in processors. However, task migration should be carefully

administered and minimized as it is associated with non-negligible overhead and poten-

tial disruptions for admitted pipelines. Nevertheless, predictable migration [LWCM14]

enables admission of new pipelines in a multiprocessor system. Our evaluation results in

Section 5.5.4 demonstrates the benefit of migrations in terms of the number dynamically

accepted pipelines.

5.4.2 Runtime Pipeline Optimization (RPO)

We provide another improvement technique for multiprocessor scheduling where we opti-

mize an already admitted pipeline by reducing its total task utilization. When CoPi fails to
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find schedulability for a new pipeline, Algorithm 5.2 picks an already admitted pipeline. It

sends the old admitted pipeline’s initial task budgets, old timing constraints and a stricter

utilization bound constraint than the pipeline is currently using, to CoPi. For our experi-

ments, Algorithm 5.2 asks CoPi to reduce a pipeline’s current utilization by 5% at a time.

If CoPi is able to find new task budgets and periods for the admitted pipeline with the new

utilization bound constraint, the algorithm unmaps all the tasks of the pipeline from all the

processors. It then remaps with new task parameters following the WFD heuristic. This

strategy reduces the total processor utilization at runtime and also makes room for a new

pipeline. Our evaluation shows that this strategy yields a higher number of pipeline ad-

missions. However, RPO implementation in a working system should ensure that the task

unmapping and mapping are done at a safe timing point. If a task τi is running, then the

scheduler may wait Ti time before new runtime and budget can be applied. Therefore, the

scheduler needs to wait (
∑N

i=1 Ti) time units in the worst-case. An RPO implementation

in an RTOS needs to be aware of such delays. The full analysis and implementation details

of RPO are out of scope of the paper and left for future work. In this paper, we show

the benefits of RPO in admitting new pipelines at runtime with simulated experiments in

Section 5.5.4.

5.5 Evaluation

We evaluate CoPi and the multiprocessor scheduling algorithm on top of it by run-

ning simulated experiments. The artifacts of the experiments are available on https:

//github.com/sohamm17/pipe schedule. We first generate individual task uti-

lizations using the standard UUnifast algorithm [BB05]. Then, we generate the task bud-

gets by multiplying the utilization with a random value chosen from uniform distribution

between 100 and 1000. These budgets are used as the initial task runtime budgets, C in

https://github.com/sohamm17/pipe_schedule
https://github.com/sohamm17/pipe_schedule
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the model. The constraint solvers including CoPi use the task budgets to solve the E2E

delay, loss-rate and utilization bound constraints.

Before going into the analysis of evaluation results, we explain a couple of param-

eters related to the E2E delay to standardize its relationship to the task budgets. These

parameters are used throughout this section.

1. Latency Budget Gap (LBG): It is the ratio of a supplied upper bound on the E2E

latency (EUB) and the summation of all the task budgets in a pipeline P .

Latency Budget Gap: LBG =
EUB

N∑
i=1

Ci

(5.16)

LBG depicts how much time-unit (or gap) is there for the task periods, that is beyond

the sum of task budgets, with respect to E2E delay. As noted in Equation 5.2 and 5.4,

the periods contribute to the E2E delay. Therefore, LBG intuitively depicts the hardness

of the E2E delay constraint.

For different pipelines, the task budgets are different. Therefore, their end-to-end delay

upper bounds (EUB) are also expected to be different. This makes it difficult to compare

how a solver performs for different pipelines with different task budgets for the end-to-

end delay constraint. LBG standardizes the relationship between the task budgets and

EUB. Thus, performance against randomly generated task pipelines are compared for

different solvers with different values of LBGs.

A higher LBG means that the upper bound on the E2E delay is greater, and the E2E

delay constraint is more relaxed. So, finding a schedulable pipeline is more probable

with a higher LBG, because of more number of possible solutions. Conversely, smaller

LBG means tighter E2E delay constraint, as the gap between EUB and the sum of task
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budgets is small.

2. Normalized LBG (NLBG): It is the ratio of the LBG and the length of a pipeline.

NLBG normalizes LBG with respect to the pipeline length.

Normalized LBG: NLBG =
LBG

N
(5.17)

We can only compare the pipelines of same length with LBG. With NLBG, pipelines

of different lengths are compared (e.g., Figure 5.9). A higher NLBG, like LBG, also

increases the probability of finding a schedulable pipeline, and vice-versa.

The loss-rate is already expressed in terms of percentage, so we do not need any other

standardized parameter for it.

We run all the experiments with Python 3.6 on an 64-bit Linux (Ubuntu 16.04) machine

featuring a Core i5-4210 processor. For every experiment, we report the average value

against 1000 randomly generated task pipelines. We choose β = 2 in all cases, whereas α

is iterated starting from 2 and then decreasing in steps of 0.01.

5.5.1 Uniprocessor Acceptance Ratio

5.5.1.1 Only End-to-end Delay Constraint

The first experiment compares the pipeline acceptance ratios (ARs) of open-source con-

straint solvers to CoPi’s AR, only under the end-to-end delay constraint. Figure 5.7a shows

the percentage of pipelines with 10 tasks, that are schedulable for uniprocessor RMS uti-

lization bound against increasing LBG. LBG is varied from an acceptance ratio of 0% to

100% for most solvers.

The GEKKO Optimization Suite [BHMH18] with its APOPT solver [apo22] dom-

inates other modeling packages and CoPi. Although pyomo [HWW11, BHH+21] uses
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Figure 5.7: Uniprocessor Pipeline Acceptance Ratios (N = 10)

a well-known IPOPT method [WB06] for MINLP problems, its implementation of the

Disjunction properties are still in development [Pyo21]. Hence, its acceptance ratio is

worse, but the performance improves with higher LBG values. scipy is a more gen-

eralized mathematical and optimization python package, from which we use the trust-

constr [BHN99, LNP98] constraint minimization approach. As it is a local minimizer, its

solution is dependent on the initial suggested value. Because of limitation in its current

implementation [sci21], it performs poorly for the same initial value that is provided to

GEKKO and pyomo.

CoPi’s AR is worse than GEKKO’s, but better than other solvers. It reaches 100% AR

at LBG = 16 when GEKKO also reaches near 100% AR. Its performance is similar for

smaller (≤ 12) and larger (≥ 15) LBG values. This experiment shows that CoPi performs

comparably with respect to the other MINLP solvers. The performance of the MINLP

solvers may well be further improved with more iterations, commercial solvers and per-

haps better modeling techniques, but MINLP solvers are not suitable for runtime schedul-

ing because of their slow execution time performances. We show this in Section 5.5.2.

5.5.1.2 Both E2E Delay and Loss-rate Constraints

We now focus on the performance of GEKKO and CoPi, as other solvers do not perform

as good as these two. For next set of experiments, we apply both the pipeline constraints
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- E2E delay and loss-rate. Apart from running GEKKO with the existing constraints, we

also run it with the Budget Adjustment Constraint (BAC) (described in Section 5.2.4.1) to

investigate whether it is able to utilize a rate-matching domain knowledge. AR is plotted

in Figure 5.7b for increasing loss-rate upper bounds against a fixed LBG = 15 and N =

10.

The graph shows that CoPi performs comparably to GEKKO. As the upper bound

on the loss-rate increases, AR also improves for both the solvers. GEKKO (with BAC)

performs worst because BAC adds more variables to the solver. It exhausts the number

of iterations with more variables. GEKKO performs much better without BAC and is not

able to exploit a rate-matching heuristic like CoPi does.

5.5.2 Solver Runtime Overhead

In the above experiments, we show that CoPi and GEKKO perform similarly against the

E2E delay and loss-rate and RMS utilization bound constraints. In next experiments, we

investigate the execution times of both the solvers to examine their capabilities in runtime

scheduling of task pipelines.

Figure 5.8a plots the runtime of CoPi and GEKKO for schedulable pipelines against

an increasing LBG for pipeline length of 10. We only plot for LBG = [13, 15] because the

acceptance ratio is significant in this range of LBG for both GEKKO and CoPi. It shows

that the runtime is comparable for both the solvers for a stricter LBG. As LBG increases,

the E2E delay constraint is more relaxed. In these cases, CoPi is able to find a schedulable

pipeline more quickly than GEKKO is capable of doing. For an LBG = 15, GEKKO takes

on average almost 5 times more than CoPi.

Figure 5.8b plots the execution times for unschedulable pipelines. It shows that even

for a unschedulable pipeline, GEKKO keeps searching for feasible task parameters longer
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Figure 5.8: Runtime Overhead under end-to-end delay constraint

time before retiring, whereas CoPi responds at least 2 times faster.

Figure 5.8c shows runtime overhead of CoPi and GEKKO with respect to increasing

pipeline length. As explained in Section 5.3.4 for CoPi, its runtime increases with increas-

ing length of pipeline (against a fixed NLBG = 1.5). The relationship between runtime

and pipeline length is nearly linear. GEKKO’s runtime for both schedulable and unschedu-

lable pipelines are greater than CoPi’s runtime for all pipeline lengths. More importantly,

GEKKO’s runtimes grow faster with pipeline length than CoPi’s runtimes do.

Table 5.2: Runtime overhead for both pipeline constraints (N = 10)

Constraints
Schedulable (ms) Unschedulable (ms)

GEKKO CoPi GEKKO CoPi
E2E Delay (LBG = 15) 61 12 327 128
E2E Delay + Loss-rate (LUB ≤ 0%) 205 104 966 130
E2E Delay + Loss-rate (LUB ≤ 25%) 191 105 1437 132
E2E Delay + Loss-rate (LUB ≤ 50%) 187 102 1801 135
E2E Delay + Loss-rate (LUB ≤ 75%) 200 107 2237 131

In the next experiment, we evaluate the effect of both the constraints on runtime over-

head for GEKKO and CoPi. Table 5.2 summarizes the result of the experiment with a

pipeline length of 10 and two constraints (LBG = 15 fixed , LUB varied). CoPi always

has lower runtime overhead compared to GEKKO. The performance of GEKKO degrades

significantly after adding both the constraints for failed pipelines from 327ms to as much
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as 2237ms, whereas CoPi takes similar time to fail to schedule a pipeline. The reason is

that CoPi checks the loss-rate constraint every time where the E2E delay constraint and

utilization bound are checked. Hence, the failing time does not increase. However, the

runtimes for schedulable pipelines does increase for CoPi after adding the loss-rate con-

straint on top of E2E delay, because it discards all the results where loss-rate is greater

than the given upper bound.

5.5.3 Performance Insights of CoPi

This section delves into more details about CoPi’s performance and its optimizations.

5.5.3.1 Pipeline Length and NLBG
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Figure 5.9 shows CoPi’s AR with increasing NLBG for different pipeline lengths only

under the E2E delay constraint. After certain NLBGs, the acceptance ratio jumps to 100%

for all pipeline lengths because: 1) assigning fixed and same period of EUB

N+1
meets the E2E

delay constraint requirement, 2) as individual task utilizations reduce with greater periods,

the utilization bound constraint is also satisfied.

The NLBG value, after which most pipelines are schedulable, is dependent on the

pipeline length. For example, Figure 5.9 shows that all pipelines are schedulable for
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pipeline lengths of 20 for NLBG ≥ 1.5. However, for pipeline lengths of 5, all pipelines

are schedulable for NLBG ≥ 1.7. This threshold NLBG is higher for shorter pipelines

because there are fewer available pipelined tasks to tune. CoPi gets fewer opportunities

to distribute the periods from the E2E delay, before the utilization bound constraint is

violated.

5.5.3.2 Effectiveness of Stage 2 and 3

Table 5.3: Performance Insights CoPi

(a) Stage 2 and 3 Acceptation Ratio under
strict NLBG

Pipeline
Length

NLBG AR (%)

3

1.3 0.8
1.4 2.2
1.5 7.4
1.6 11.1

5

1.3 2.1
1.4 6.5
1.5 22
1.6 31.8

10

1.3 2.5
1.4 6.7
1.5 7.2
1.6 35.5

15

1.3 1.1
1.4 1.7
1.5 4.8
1.6 49

(b) Acceptance Ratio Improvement with Larger Utilization
Bound for Harmonic Tasksets (N = 10)

NLBG RMS Utilization Bound AR (%)

1.1 ≤ n× (2
1
n − 1) 0

≤ 1 20.4

1.2 ≤ n× (2
1
n − 1) 0.3

≤ 1 67.6

1.4 ≤ n× (2
1
n − 1) 3.3

≤ 1 98.7

1.5 ≤ n× (2
1
n − 1) 35

≤ 1 100

1.6 ≤ n× (2
1
n − 1) 100

≤ 1 100

With smaller and stricter NLBG, it is harder to find a schedulable pipeline. Table 5.3a

shows the AR by CoPi’s Stage 2 and 3 with varying pipeline length and strict NLBG values

to show its effectiveness of those two stages. Together with Figure 5.9, it demonstrates

that CoPi’s Stage 2 and 3 could find more feasible pipelines for stricter NLBGs for any

pipeline length. For example, CoPi’s Stage 2–3 AR is 31.8% for NLBG = 1.6 and

N = 5, whereas CoPi’s overall AR is also 31.8% for the same pipeline length and NLBG
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(see Figure 5.9). It shows that the Stage 2 and 3 contributed to all the pipeline acceptances

for NLBG = 1.6 and N = 5. Moreover, CoPi’s optimizations are more useful for longer

pipelines because the Stage 2 and 3 are able to tune more number of tasks in a pipeline to

satisfy the constraints. It can be seen that Stage 2 and 3 schedule as many as 49% pipelines

(N = 15, NLBG = 1.6) in Table 5.3a.

5.5.3.3 Utilization Bound

CoPi checks the Liu-Layland RMS utilization bound to determine whether a pipeline is

schedulable in a uniprocessor. However, RMS utilization could be relaxed to 1 if all the

tasks are harmonic [KM91]. Exploiting this RMS scheduling property, Table 5.3b shows

that CoPi is able to schedule more tasks, even with very strict NLBGs.

5.5.3.4 Other Variations

In a set of experiments, we compare two strategies of iterating over α within a fixed range:

incrementing and decrementing. We investigate which one reduces the number of CoPi

optimization loop iterations of Stage 2 and 3 combined. For α’s increment, we start from

the value derived by Equation 5.14 and increase until α = 2 to limit the number of itera-

tions. For decrement, we start from a higher α value (2 in the experiment) and decrease

until 1.01, or the point when scaling up periods by α does not meet the utilization bound

test.

Figure 5.10 shows the number of iterations for schedulable pipelines of length 10. As

NLBG increases from 1.3 to 1.5, incrementing α takes smaller numbers of iterations as

we find feasible period assignments more quickly from a higher starting value of α. The

range of searching a desired α decreases. Decrementing α is thus not preferable. Both of

these techniques have similar acceptance ratio.
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5.5.4 Multiprocessor Performance

In this section, we investigate the performance of our multiprocessor scheduling algorithm

coupled with CoPi. We measure the number of pipeline acceptances for dynamically ap-

pearing pipelines in a simulated environment that models a runtime scheduling scenario.

We experiment with 2, 4 and 8 processors. We feed 50, 100, and 200 pipelines re-

spectively to the 2, 4, and 8 processors. For each of these experiments, pipelines are fed

one after another to simulate dynamically appearing pipelines. After every 5, 10 and 20

pipelines respectively for 2, 4 and 8 processors, all the pipelines are unmapped from the

processors to simulate ephemeral pipelines. We also vary the pipeline length.
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Figure 5.11: Number of Accepted (Schedulable) Simulated Pipelines in Multiprocessors

Figure 5.11 shows the number of schedulable pipelines for different pipeline lengths

and number of processors. Here, WFD stands for the worst-fit decreasing heuristic, mig is

runtime task migration (described in Section 5.4.1), RPO is runtime pipeline optimization

(described in Section 5.4.2). We show the performance when WFD is solely used without

migration and RPO, WFD with individually RPO (+RPO only) and migration (+mig only),

and with both of them together (+both). On a high level, the experiment reveals that

proposed runtime optimizations accommodate more dynamically appearing pipelines.

Individually WFD with only RPO has limited impact in accepting more pipelines in

a number of cases ((N=3, 10 M=2), (N=3, 10, M=4), (N=all, M=8), where M is num-
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ber of processors). Because of the limitations of the WFD heurisic, RPO alone cannot

help significantly in accommodating more pipelines, unless already admitted tasks create

utilization holes for new pipelines after optimization. Nevertheless, applying both run-

time strategies together (+both) results into more pipeline admissions in all processors

and pipeline lengths. After task migrations create bigger available utilization holes in

processors, RPO helps in accommodating more pipelines.

In Figure 5.11a, both migration and RPO are not able to accommodate more pipelines

for N = 10 in 2 processors. As the pipeline length is longer, the algorithm cannot accom-

modate all the tasks of a single pipeline in just 2 processors. So the number of pipeline

admissions does not improve.

5.5.4.1 Processor Utilization

Table 5.4 tabulates the normalized (per processor) utilization at the end of the experiment

for varying pipeline lengths. It shows that RPO indeed decreases the processor utilization

on average. But it does not adjust the available utilization holes in processors for new

tasks. Adding migration with RPO improves the per processor utilization in addition to

admitting more pipelines.

The RMS utilization bound is 69%, when the number of tasks tends to infinity. Rest
Table 5.4: Multiprocessor Utilization

Pipeline Length Strategy Normalized Utilization Per Processor (%)

3

WFD 51.2
+ RPO only 50.5
+ migration only 54.8
+ both 54.2

5

WFD 54.9
+ RPO only 55
+ migration only 60.8
+ both 62.46

10

WFD 61.6
+ RPO only 60.8
+ migration only 65
+ both 64.4
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of the CPU is usually given to lower-priority background tasks. So our multiprocessor

algorithm actually keeps the processor utilization to a respectably high level, as displayed

in Table 5.4.

5.5.4.2 Task Migrations

Table 5.5 shows the number of average migrations which resulted in successful scheduling

of new pipelines. Number of migrations increases with more processors, as the algorithm

limits the number of migrations per new candidate pipeline by the number of processors.

Overall, this experiment shows that only a few migrations are needed to accommodate

new pipelines in the system, and the average numbers of migrations are much smaller than

their limits.

Table 5.5: Migrations in Multiprocessor
Processors Strategies Average Migrations

2 WFD + migration only 0.1
WFD + migration + RPO 0.13

4 WFD + migration only 0.67
WFD + migration + RPO 0.67

8 WFD + migration only 2.7
WFD + migration + RPO 3.17

5.5.5 Case Study with an Industry Benchmark

We have tested CoPi with a benchmark from the WATERS 2015 workshop paper [KZH15],

provided by Bosch, for uniprocessor scheduling. We calculate the worst-case execution

time of a task by multiplying a random average case execution time (ACET) with a random

WCET factor. The random ACET and WCET factor are chosen from the task distribution

provided in Table III of the paper. We consider pipeline lengths from 3 to 15 because each

runnable from the dataset might be re-implemented as a pipelined task.

Figure 5.12 summarizes the result of this experiment. Figure 5.12a shows the accep-
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Figure 5.12: Experiments with Dataset from Bosch [KZH15]

tance ratio among 1000 randomly generated tasksets for each case. The graph is similar

to Figure 5.9, but focuses on NLBG between 1.4 to 1.7 for more fine-grained data points.

Figure 5.12b captures the average E2E delay for schedulable pipelines in ms, where each

runnable’s WCET is in µs granularity. Figure 5.12c shows a CDF of the worst-case execu-

tion times for 3 tasks pipelines. Other pipeline lengths have similar CDF. In Figure 5.12b,

the E2E delays for smaller pipelines are under 10ms which is usually expected in auto-

motive industries. The E2E delays for longer pipelines go up to 30 ms depending on the

NLBG. As longer pipelines might be utilized for comparatively lower frequency work-

loads, slightly longer E2E delays are tolerable.

5.5.6 Case Study in DriveOS

As a real-world case study, we generate the task budgets and periods of a pipeline of

5 tasks with CoPi and create a model with those parameters in ModelMap. The model

binds 5 tasks to 5 real-time periodic threads in the DriveOS’ Quest RTOS domain which

schedules the tasks with RMS algorithm. The task communicates with each other via

asyncRead and asyncWrite Simulink blocks. Table 5.6 summarizes the result.

The end-to-end delays in Table 5.6a are computed for different NLBGs. The task

budgets and periods are adjusted by CoPi based on the NLBG values. These NLBGs are

higher than the ones in Section 5.5.3 because the other tasks including the I/O threads
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Table 5.6: Experimental Results in Quest RTOS domain of DriveOS
(a) End-to-end Delay (Loss-rate = 0%)

NLBG CoPi E2E Delay
Upper Bound

Maximum E2E
Delay in DriveOS

2.3 4815 2796
2.4 4864 2861
2.5 4857 2837
2.6 5423 3023
2.7 5635 3174

(b) End-to-end Loss-rate

CoPi Loss-rate
Upper Bound

Loss-rate in
DriveOS

0 0
25 9
50 28
75 47

reduce the available CPU utilization. The utilization values of the pipelines are in the

range of 41–44%. The second column shows the theoretical E2E delay of a pipeline using

Dürr et al.’s formula [DBCC19] after CoPi has found a schedulable set of task budgets and

periods. The third column is the observed maximum E2E delay of a pipeline in DriveOS.

This shows that the worst-case E2E delays in DriveOS are within their theoretical upper

bounds for a set of task budgets and periods derived by CoPi. We also repeat the same

experiments for different expected loss-rates of 0%, 25%, 50% and 75%. Table 5.6b shows

that the observed end-to-end loss-rates in DriveOS are under their theoretical upper bounds

as derived by CoPi.
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Conclusion

This thesis presents a vehicle operating system framework which consists of multiple OS

domains on a centralized hardware platform for mixed-criticality automotive applications.

As part of the framework, we have introduced the DriveOS integrated VMS which is be-

ing used for a production-grade electric car. DriveOS uses a real-time separation kernel to

host an in-house RTOS, Quest, and Yocto Linux as guest OS domains. As proof of con-

cept, a fast and predictable CAN gateway and a longitudinal controller are implemented

as real-time services. These services support three vehicle applications in Linux, namely

IC, IVI and OpenPilot ADAS. A secure, predictable and low-overhead shmcomm mod-

ule facilitates the shared memory communication between real-time services in Quest and

applications in Linux. DriveOS is tested using timing-based metrics against a standalone

Linux that is currently found in many infotainment systems in the automotive industry. Ex-

periments show that the maximum E2E delay for a USB-CAN-dependent controller loop

is 12 times more in Linux than in DriveOS. DriveOS also achieves 24% more throughput

for a vehicles CAN messages than a standalone Linux.

We also present ModelMap for model-based multi-domain application development

and deployment in DriveOS. ModelMap consists of Simulink blocks for binding real-time

threads of control, inter-task communication and CAN I/O. It supports the generation of

nested binary executables to encapsulate and execute DriveOS applications. Experiments
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show that custom and real-world DriveOS Simulink models, designed using ModelMap,

have predictable E2E delays, in keeping with the requirements of a high performance

electric vehicle.

Furthermore, this thesis explores the real-time task pipeline model to guarantee end-

to-end properties of connected ECU software tasks. To this end, we present a non-linear

optimization problem to find suitable task budgets and periods under a pipeline’s end-to-

end constraints and scheduling utilization bound. We propose CoPi, a heuristic constraint

solver algorithm, which tunes task periods and budgets to minimize a pipeline’s end-to-

end delay and loss-rate. It essentially converts the pipelined real-time tasks to independent

periodic tasks. We explain CoPi with examples and analyze with simulated experiments.

Experiments show that CoPi performs favorably in terms of task pipeline acceptance ratio,

compared to open-source MINLP solvers like GEKKO [BHMH18]. CoPi has an order of

magnitude better runtime than GEKKO. CoPi is better suited for OS-level scheduling than

an MINLP solver. We also demonstrate the benefits of CoPi in multiprocessor scheduling

for dynamically appearing pipelines with fewer task migrations and more pipeline admis-

sions with simulated tasksets. Moreover, we show that CoPi’s task budgets and periods

for a pipeline of periodic tasks meet the theoretical E2E properties of a pipeline when it is

deployed in DriveOS.

6.1 Future Work

Plans are underway to migrate more ECU functions to DriveOS with the ModelMap frame-

work, to support real-time torque vectoring and battery management. Figure 6.1 shows

an overview of the current and possible future components in DriveOS. The userspace

threads and processes are inter-connected via shmcomm channels. The CAN gateway

in Quest could be connected to domain-specific filter threads in different other DriveOS
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domains. A domain filter will forward CAN messages to other applications based on a se-

curity policy. In addition, real-time (RT) services like HVAC could be securely exposed to

domain-specific distributor threads which would mediate access to these critical services

from other applications in a domain. Moreover, services within a single domain could

communicate with each other via shmcomm channels without a cross-domain connection.

For example, a Linux IVI application may need to exchange map updates with an ADAS

service in Linux. Similarly, a real-time power management module in Quest may turn off

other vehicle devices via the CAN gateway. The shmcomm channels could be leveraged

to construct a virtual vehicle function network.

Figure 6.1: More Functions in DriveOS

Future work will also use Quest’s real-time USB framework to integrate camera de-

vices as part of an enriched autonomous vehicle framework. Additional real-time virtual

device interfaces will be provided via shmcomm to allow Linux and Android to implement

new ADAS services. The shmcomm module could be interfaced with existing application

frameworks such as ROS [QCG+09] for publisher-subscriber communication. ROS appli-

cations in Linux domain can access real-time I/O in Quest via the shmcomm interfaces.

DriveOS currently isolates critical and non-critical tasks into separate OS domains

using a partitioning hypervisor [WLMD16]. Other system design techniques could be ex-
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plored for isolated application domains [Sin18]. As more functions are consolidated in

DriveOS, a single domain may itself include a mixed-criticality taskset [Ves07]. For ex-

ample, a Linux domain in DriveOS can include a video player as part of the IVI functions

and an object detector as part of an ADAS service. The video player would then be con-

sidered low-criticality, and the object detector would be high-criticality task in Linux. In

such a scenario, a mixed-criticality scheduling algorithm is necessary to ensure that the

low-criticality tasks have enough CPU runtime for its minimum service-level guarantees

while a high-criticality task meets its deadlines. Our progress-aware scheduling algorithm,

called PAStime [SWG20], improves the Adaptive Mixed-criticality [BBD11] scheduling

to attain better Quality-of-service (QoS) in low-criticality tasks. It inserts checkpoints in a

high-criticality object detector application at compile-time. At runtime, it gives more CPU

time to the low-criticality tasks if the high-criticality tasks progresses as expected at the

inserted checkpoints. Thus, the low-criticality gets more time to run and achieves better

QoS. PAStime is integrated into a uniprocessor LITMUSRT [CLB+06], a variant of Linux.

Figure 6.2 shows the improved frame-rate and CPU utilization of a low-criticality MPEG

video decoder, while a co-running high-criticality object detector application meets all its

deadlines. A LITMUSRT sandbox in DriveOS with PAStime runtime policy could be inte-

grated to enable intra-domain mixed-criticality scheduling. More such cross-domain and

intra-domain real-time and mixed-criticality task scheduling policies [Sin18] are possible

directions for future work.

The end-to-end scheduling of real-time task pipelines has applicability in many cyber-

physical systems, even beyond the automotive domain. Therefore, pipeline scheduling

needs to be adopted in application frameworks. ModelMap already takes advantage of

CoPi to provide predictable pipeline properties in the Quest RTOS domain of DriveOS.

Further, the nested binary interface could be extended to integrate CoPi across different
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Figure 6.2: Video Decoder Performance

DriveOS domains. In the future, application frameworks such as ROS [QCG+09] and

micro-ROS [mic22] can also use CoPi and its multiprocessor scheduling to parameterize

and schedule a predictable pipeline of periodic tasks in RTOSes like FreeRTOS [Fre22b].

Furthermore, a model-driven pipeline programming language will be investigated

on top of the ModelMap framework. Model-based design languages like Simulink

provide a rich and intuitive interface to build modular and composable software task

pipelines [GCW18, GSW20]. Data communication and its constraints could be treated as

first-class properties in the language. End-to-end guarantees of a task pipeline in Simulink

could be verified in simulation under a provided task scheduling algorithm. Since Mod-

elMap demonstrates predictable end-to-end properties of the Simulink models in DriveOS,

the language interface would offer a verifiable guarantee of the end-to-end properties both

at the design time and runtime.
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