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Abstract—Understanding tissue motion in surgery is crucial
to enable applications in downstream tasks such as segmenta-
tion, 3D reconstruction, virtual tissue landmarking, autonomous
probe-based scanning, and subtask autonomy. Labeled data are
essential to enabling algorithms in these downstream tasks since
they allow us to quantify and train algorithms. This paper
introduces a point tracking challenge to address this, wherein
participants can submit their algorithms for quantification. The
submitted algorithms are evaluated using a dataset named surgi-
cal tattoos in infrared (STIR), with the challenge aptly named the
STIR Challenge 2024. The STIR Challenge 2024 comprises two
quantitative components: accuracy and efficiency. The accuracy
component tests the accuracy of algorithms on in vivo and ex
vivo sequences. The efficiency component tests the latency of
algorithm inference. The challenge was conducted as a part of
MICCAI EndoVis 2024. In this challenge, we had 8 total teams,
with 4 teams submitting before and 4 submitting after challenge
day. This paper details the STIR Challenge 2024, which serves to
move the field towards more accurate and efficient algorithms for
spatial understanding in surgery. In this paper we summarize the
design, submissions, and results from the challenge. The challenge
dataset is available here: https://zenodo.org/records/14803158,
and the code for baseline models and metric calculation is
available here: https://github.com/athaddius/STIRMetrics
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I. INTRODUCTION

THE 2024 STIR challenge is designed to help improve
tracking and reconstruction methods in surgery. Knowl-

edge of tissue motion and location is critical to enable many
tasks in medical computer vision [19]. Improved accuracy of
motion estimation is essential to enable automated dexter-
ity [9], autonomous scanning [24], and virtual landmarking.
Improved performance here will likely also benefit foun-
dation models, where physical priors can be incorporated
into pretraining. This challenge marks the first in kind for
point tracking, wherein we use infrared labels to quantify
the performance of submitted methods. The data used in
the challenge comprises 60 sequences with each sequence
including an average of 8 points.

In this section, we will first provide a brief clarification of
the challenge dataset compared to the original STIR dataset
in I-A, followed by a non-exhaustive summary of datasets that
we see as useful to tracking in Section I-B. After which, we
will describe the dataset format and annotation protocol for
the challenge in Section II. Then, we describe the metrics
we calculate as part of the challenge in Section III. We then
summarize all submissions received in Section IV, and their
results in Section V. We provide a discussion of the results and
challenge organization in Section VI, and finally conclude in
Section VII. For a high-level overview of the challenge, refer
to Fig. 1.

A. STIR Challenge Data (STIRC2024) vs STIR Original
(STIROrig)

Here, we will explain the differences between the STIR
Challenge 2024 and the STIR dataset. The original STIR
dataset (STIROrig) is a dataset that is publicly released and
usable for test, validation, or training (available at: https:
//ieee-dataport.org/open-access/stir-surgical-tattoos-infrared).
This dataset is released as a way to validate, test, design, and
evaluate algorithms [18]. STIROrig remains useful for this
exact purpose, in addition to being larger than the challenge
dataset. The STIR Challenge 2024 dataset (STIRC2024) is a
similar dataset that was witheld from the initial STIR dataset
release in order to enable proper evaluation without the risk
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Fig. 1. This figure describes the STIR Challenge 2024. Participants submit their algorithms in a docker container. The algorithm receives a video and a list
of start points from each sequence in the dataset. Participants use their tracker to estimate the motion of a set of points for every frame in a video. Videos are
provided in a streaming manner. The final estimates are then compared to the ground truth labels (Section II) at the end of the video. The errors (Section III)
are then averaged across all points to obtain the final metrics in 2D or 3D. Latency is also calculated alongside the inference for those who participated in
the efficiency component of the challenge.

of participants fine-tuning or overfitting to already released
data. STIRC2024 has additional filtering and removal of
noisy labels, and can be used for fine grained evaluation and
testing.

B. Useful Datasets for Tracking in Surgery
At MICCAI 2022, a similar challenge was organized for

the same task of tracking tissue [2]. The primary differences
are our use of a point-tracking metric [4], and increased size
and diversity of our data. In addition, the STIR dataset is not
labeled in a temporally dense manner, while the SurgT dataset
is labelled per-frame.

There are many other datasets that can benefit tissue track-
ing. For a detailed summary of useful datasets in this space, re-
fer to the review [19]. Since that review, additional datasets and
meta-datasets have become available. Here is a brief list of data
we recommend looking at. Meta-MED [1] is an assembled
meta-dataset. This dataset is intended to be used for training
and evaluating monocular depth models, but would also be
useful for self-supervised training of tracker models. The
StereoMIS [8] dataset comprises many stereo sequences and
could be used for similar purposes. The SurgVU dataset [25]
also serves as a large (hundreds of hours) repository of single-
eye video that could be used for self-supervised training.

II. DATASET AND ANNOTATION

The STIR Challenge 2024 dataset consist of sets of stereo
video clips collected on a da Vinci Xi system. Each clip

consists of a start IR image Is and an end IR image Ie,
segmentations of the fluorescent ink Ss and Se, respectively,
and the visible light clip V . All frames are of size 1280 × 1024
pixels. Is, Ie are in Portable Network Graphic (png) format; V
is the action video in MPEG-4 Part 14 (mp4) format; Ss, Se

are binary segmentations of the IR frames (png). This dataset
comprises 60 sequences. Their average length is 8.9 seconds,
with a standard deviation of 12.1 seconds. The distribution can
be seen in Fig. 2. For a histogram of points per video refer to
Fig. 3. No clips longer than 4 minutes are included. Summary
images of the labels can be found in Fig. 4. There are a total
of 496 points over the 60 sequences.

This dataset was created following the same process as
STIROrig [18], and more detail can be found there. The
labelling process is visually described in Fig. 5. At a high
level, points are tattooed with indocyanine green (ICG) ink,
to create ground truth labels. The endoscope is switched to
fluourescent mode at the start and end of an action to collect
the point locations at the start and end of a video. The video
for tracking is recorded in white light, and multiple actions
can happen within. The data comes from porcine subjects for
the in vivo cases, and is a mix of different tissue for the ex
vivo cases.

Segmentations are created by first thresholding the IR-
channel of the image. An opening morphological transforma-
tion, which consists of erosion followed by dilation, is applied
to reduce noise. The resulting segments are then verified by
ensuring that if a segment appears in the start image that it
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Fig. 2. Temporal distribution of videos. Most clips lie between 0 and 10
seconds, with a few longer clips > 20 seconds. Average clip length is 8.9
seconds.

Fig. 3. Number of labelled points per video. Labels can be seen in Fig. 4.

also appears in the end image. To annotate, we first evaluate
visibility of markers over randomly sampled cases, ensuring
the tattoos do not provide features that algorithms could
track [18]. After this, a user looks through every case and
removes noisy segmentation masks that result from specularity.
This filtering helps to reduce label noise.

In order to compute the ground-truth 3D locations, we
complete an epipolar search with normalized cross correlation,
using the segmented points as candidates. This enables us to
select which segment in the right image corresponds to a given
segment in the left image.

The 3D position for a segment is calculated by backproject-
ing it. Since the left and right eyes of the endoscope do not
have the same principal point, with the left at cx and the right
at c′x, we must backproject with this in mind. We calculate
depth using the baseline b, focal length f , and cx, c

′
x from the

calibration along with the point x-location in the left and right
image (x, x′). The depth, z, is:

z =
b ∗ f

(x− cx)− (x′ − c′x)

Fig. 4. Start point labels for all 60 sequences in in the STIR 2024 test dataset.
For each sequence, center points are extracted from each segmentation, and
passed to each participant’s tracker.

A. Data Format

We summarize the dataset of the STIR Challenge 2024
(STIRC2024) here, noting the format is the same as that for
STIROrig [18]. STIRC2024 includes a set of 9 collection ses-
sions, named as <%02d>, (02, 03, 04, 05, 06, 07, 08, 09, 11).
There are 5 in vivo sessions (03, 04, 07, 08, 11) and 4 ex
vivo sessions (02, 05, 06, 09). Each session includes multiple
sequences. An example sequence for one of the in vivo cases
is shown in Fig. 6.

left

starticg.png (Infrared ICG image of start
frame)
endicg.png (Infrared ICG image of end frame)
segmentation/startim.png,
segmentation/endim.png (Filtered and seg-
mented binary versions of ICG start and end image)
frames/<ms>_ms.mp4 (video file)

right

starticg.png
endim.png
frames/<ms>_ms.mp4 (video file)

calib.json Camera calibration parameters (intrinsics,
relative stereo pose translation in metres and axis-angle
rotation format)

The video file names include start and end capture times in
milliseconds.

III. METRICS

In this challenge, we evaluated the submitted algorithms
based on two different metrics: accuracy and efficiency. The
accuracy metric is important for clinical verification. The
efficiency metric measures the timing latency of the submitted
algorithms and evaluates an algorithm’s feasibility in running
on clinical systems. For the accuracy metric, we used two
categories: 2D trackers, and 3D trackers.

A. Accuracy

To evaluate accuracy, we use a metric which manages
outliers well via calculating accuracy over multiple thresholds.
This metric can be used easily in 2D and 3D. The metric
is δavg, introduced in TAP-Vid [4], which is a non-medical
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Fig. 5. Dataset labels and label creation process. The ground truth is collected by using a tattoo needle to label points at the start and end of video frames.
After tattooing is completed, multiple sequences can be collected. For each sequence, the camera captures an image in infrared (ground truth start frame), then
switches to white light. Actions are performed under white light, and this video is recorded and saved. Then the camera switches back to IR and captures the
end frame which is used as the ground truth for each point’s motion. Segments are the binary-thresholded IR images; tattooed regions are shown in white.
On the right is a figure showing a set of random triplets with the triplet: (IR image, visible light image, segment/GT image) for each point shown.

point tracking challenge. In TAP-Vid [4], the points also
have an occlusion score, but here we use data in which
the points are unoccluded at the end frame. In our scenes
points can be occluded and reappear during a sequence due
to camera movement, instrument-tissue occlusion, or tissue-
tissue occlusion.

To calculate the metric, δavg , in our case, each algorithm
estimates the position for a point (or multiple points) for each
frame in a video in a streaming manner. The final frame
location estimate results in a point (or multiple points), p̂end.
The calculated finish points, p̂end, are 2 dimensional for 2D
trackers, and 3 dimensional for the 3D trackers. The accuracy
metric is averaged across all points and thresholds, with each
point weighted evenly. To calculate euclidean distance, each
point is matched to its nearest point in the end point label.

δavg = ΣM
i=iδ

li/M (1)

δli = Σp̂end
1(d(p̂end, p

nearest
end ) < li)/N (2)

1 is the indicator function, used to count the amount of
points under the distance threshold. d() is a function to
estimate euclidean distance in the dimension of input (2D/3D).
N is the total number of points across all videos, and M is
the number of thresholds used. Thus, δli is accuracy at the
threshold li. For 2D, the thresholds are l = [4, 8, 16, 32, 64]
with units as pixels in the full 1024×1280 image. For 3D, the
thresholds are l = [2, 4, 8, 16, 32] with units as millimetres.

B. Efficiency

The efficiency of an algorithm is measured by its compu-
tational latency, assessed across all video frames to derive a
latency distribution. While the mean latency provides a general
efficiency metric, it fails to capture worst-case behavior. In
real-world surgical point tracking, predictability depends on
worst-case and tail latencies. Therefore, we evaluate efficiency

using the 95th and 99th percentile latencies in addition to the
mean. The final efficiency score is the average of these three
metrics, offering a comprehensive assessment of both real-time
and practical performance. A submission is considered for the
efficiency category only if the accuracy of the algorithm is
above a certain threshold.

IV. SUBMISSIONS + BASELINES

Here, we summarize submissions to the challenge. The
submissions are grouped by those that who were participants
for the challenge day (pre-challenge), who were viable for
prizes, and those afterwards (post-challenge). We also provide
the results from the baseline methods that we provided on our
github page, https://github.com/athaddius/STIRMetrics.

A. Baselines

1) MFT: This is the baseline MFT method [16]. This
method runs optical flow between a frame and multiple frames
at skips into the past. The algorithm selects its optimal trajec-
tory by selecting the highest certainty unoccluded trajectory.
RAFT is used as the optical flow method in. To maintain
inference efficiency, images are downsampled by a factor of
2 for tracking. Skip factors are the same as those used in the
MFT paper [−∞, 1, 2, 4, 8, 16, 32] The occlusion threshold is
set as 0.02. After tracking, the locations are scaled up by 2 to
get the coordinates in full resolution.

2) CSRT: This method uses the Channel and Spatial Relia-
bility tracker (CSRT [15]), initialized with a region of interest
around each point in the first frame. This tracker uses a
correlation based adaptive template matching to track a point
across a video. Tracking is performed on half scale images,
and upscaled. The region of interest for each point is a 29×29
box with its center as the point location.

https://github.com/athaddius/STIRMetrics
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Fig. 6. Example in vivo sequence (session 04, sequence 10) from the STIR Challenge 2024 test set. The start segmentation (middle, left) is converted into
a set of points, 5 in this case, that are passed to the algorithm which tracks in the white light stereo video (top). The algorithm results are compared to the
ground truth end points (middle, right).

3) RAFT: In the RAFT implementation, we use RAFT [22]
off-the-shelf to track points from one frame to the next in
a streaming manner. We track on half-scaled images, for
efficiency, and multiply the final tracking result by 2 to obtain
full-resolution results. RAFT internally iterates multiple times,
refining estimates with iteration. We use 12 iterations in
inference.

4) RAFT + RAFT Stereo (3D): This is the 3D baseline,
which uses RAFT to estimate flow from one frame to the next
in the left eye, and finds the 3D position by backprojecting
the points using the disparity estimate alongside the camera
calibration. The disparity estimate is calculated using RAFT-
Stereo [13].

5) Control: The control method estimates 0 motion for
every point. This provides a minimum bound of accuracy
which is useful for debugging and static scenes. This also
allows the organisers and participants to ensure the challenge
methods use the correct data. The control method runs along-
side submissions. During the challenge, this served as a useful
sanity check.

B. Challenge Day

Four teams were able to submit in time for challenge day.
1) Team ICVS 2AI: Team ICVS 2AI proposes an

occlusion-aware optical flow-based solution. Targeting to
tackle the problem of labeled-data-scarcity in surgical domain,
the method employs ARFlow as the optical flow model trained
on the SurgT dataset in a self-supervised fashion following
previous work [21]. The proposed architecture, which is

Fig. 7. Overview of the solution provided by team ICVS 2AI. The post-
processing block in the baseline method utilized forward-backward occlusion
masks.

depicted in Fig. 7, first crops a 512 × 512 region around
the location of the last track location, then estimates the
optical flow between the source target frames. To prioritize
runtime performance, for the efficiency component, the point
tracks are only computed between previous frame t − 1 and
current frame t; however, in the 2D accuracy challenge, frame
t − 2 is also used as a secondary source frame and the final
point track is estimated as the weighted average of the two
computations. For the 3D challenge, the estimated 2D point
track is lifted to the 3D space by stereo-depth computation
applying the flow-model between left-right image pairs.

2) Team MedTrack: Team MedTrack proposes a two-step,
hierarchical, long-term tracking method called Dynamic Multi-
Frame Point Tracking (DMPTracking) depicted in Fig. 8.
In the first step, DMPTracking employs an MFT-based [16]
approach to estimate point tracks and their visibilities at
a coarse level. Following MFT’s [16] original structure, as
explained in further detail in Section IV-A1, it computes
the optical flow, uncertainty, and visibility scores between
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Fig. 8. Overview of the solution provided by team MedTrack: DMPTracking.
First, it uses coarse optical flow to provide an initial tracking position Pt for
the query points P0, and then refines the tracking results using multi-frame
information.

the current frame and a set of geometrically distanced past,
template, frames and estimates the track of a point through a
temporal chaining mechanism. However, this template-based
optical flow mechanism can provide erroneous solutions if
there are large brightness changes between the templates and
the current frame. DMPTracking utilizes a filtering mechanism
that checks the magnitude of the spatial gradient of the optical
flow map and replaces the values that are above a threshold
with interpolated values from the local neighborhood.

In the second step, DMPTracking utilizes a CoTracker-
based [11] structure to refine the coarse-solution. As an end-
to-end learning based approach, CoTracker [11] processes a
video sequence in chunks with a window size of 8 frames and
in each step slides the window by a stride of 4 frames. In
certain cases, such as occlusions spanning multiple windows
or long sequences, this window-based processing can cause
failures in tracking. To prevent this, the proposed architecture
alters the structure of the sliding window, and instead fixes the
first and last frames of it to be, respectively, the initial frame
of the entire sequence and the current frame. The remaining
6 frames are chosen from previously observed frames.

3) Team Jmees: Team Jmees employs MFT [16] for both
2D and 3D tracking tasks. For 2D tracking, the model pro-
cesses input frames at 1/4 of their original size to enhance
computational efficiency. In the 3D tracking task, points are
tracked independently in the left and right frames and sub-
sequently lifted into 3D space using the disparity computed
between them.

4) Team CCG DGIST: Team CCG DGIST proposes a
joint sparse keypoint matching and dense optical approach,
depicted in Fig. 9. The optical flow model consecutively
processes frames to estimate and store the point tracks. Con-
currently, the sparse keypoint matching method is utilized
to estimate homographic transformations of tracked points
between the initial and target frames. The final track update
is selected based on a decision algorithm. In more detail,
the optical flow based decision is selected if a matched
keypoint exists within a certain threshold of the optical flow
estimation. In the case of detection of a drift of the optical
flow estimation with respect to the keypoint-based estimation,
the latter’s estimation is selected as a correction. Finally, if
the displacement between the keypoint and the optical flow
based method is above a certain threshold the keypoint-based

Fig. 9. Overview of the solution provided by team CCG DGIST that
combines sparse feature matching and dense optical flow estimation.

estimation is selected.

C. Post-Challenge Day

1) Team CTUPrague: Team CTUPrague participates with
their MFT [16]-extending method, MFTIQ [20]. Similar to
MFT, MFTIQ uses the optical-flow chaining structure and
replaces the implicit occlusion and uncertainty estimation of
the optical flow model with an independent network that
aggregates the warped feature maps with a feature similarity
cost map to compute the quality and occlusion scores. This
renders further adaptability of the architecture with various
flow estimation backends. In this challenge, their submis-
sions utilize two separate flow models: SEA-RAFT [23] and
ROMA [7].

2) Team UBC RCL: Team UBC RCL participates with
A-MFST [3]. Extending the flow-chaining architecture of
MFT [16], A-MFST replaces the RAFT [22]-based optical
flow backend with SENDD [17] and the certainty and occlu-
sion estimation with backward-forward flow consistency. This
consistency score is also used for frame selection to prioritize
more reliable template curation. Instead of storing input im-
ages as templates, as in MFT [16], A-MFST caches previously
computed features to reduce redundant computations in the
flow-estimation.

3) Team SRV: Team SRV participates with a frame-to-
frame tracking method, SEA-RAFT [23]. Focusing on ef-
ficiency improvements, SEA-RAFT extends over the prior
work RAFT [22] and introduces a more efficient architecture.
Coupled with a more robust training strategy, it additionally
shows accuracy improvements.

4) Team CUHK: Team CUHK participates with TAP-Endo,
a semi-supervised method extending MFT [16]. The proposed
architecture utilizes SEA-RAFT [23] to replace MFT’s original
optical flow component. The architecture uses a three step
training strategy to improve generaliziblity to endoscopic
scenes. Their method is shown in Fig. 10. In the first step, a
pretrained SEA-RAFT with frozen weights are appended with
a gated attention module and trained in supervised fashion
on synthetic datasets to predict the uncertainty and occlusion.
In the second step, a part of the SEA-RAFT backbone is
unfrozen and refined using endoscopic datasets [2], [18] in a
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Fig. 10. Overview of the solution provided by team CUHK: TAP-Endo.
It consists of a three step training structure: (1) supervised training of the
uncertainty and occlusion block; (2) fine-tuning of the optical flow model
using endoscopic data in a self-supervised fashion; (3) fine-tuning of the
uncertainty and occlusion block leveraging pseudo-labels acquired using a
set of state-of-the-art point tracking methods.

TABLE I
2D TRACKING ACCURACY COMPARISON. δli INDICATES THE TRACKING

ACCURACY WHERE li IS THE THRESHOLD DEFINED IN PIXELS.

Method δli ↑

li = 4 li = 8 li = 16 li = 32 li = 64 Avg.

Baselines

RAFT 07.26 19.56 39.92 64.92 80.44 42.42
CSRT 22.78 47.38 67.14 74.80 81.05 58.63
MFT 42.54 69.36 86.49 93.35 96.37 77.62

MICCAI
Submissions

ICVS 2AI 25.40 51.01 74.19 88.71 92.54 66.37
JMEES 26.00 54.44 77.42 91.73 95.36 68.99
CCG DGIST36.09 63.51 83.87 90.93 94.36 73.75
MedTrack 38.91 67.54 86.69 93.15 95.97 76.45

Post
MICCAI
Submissions

SRV 07.86 18.15 31.65 47.78 66.73 34.44
UBC RCL 20.57 42.34 66.73 77.42 85.89 58.59
MFTIQ-
SEARAFT

42.34 68.95 85.89 92.14 94.76 76.82

MFTIQ-
ROMA

44.36 69.56 85.89 91.13 95.16 77.22

CUHK 40.93 68.95 87.50 93.15 96.37 77.38

self-supervised fashion [14]. In the final step, the occlusion and
uncertainty heads are fine-tuned using pseudo-labels generated
by a set of state-of-the-art point tracking methods [10], [16],
[12], [6].

V. RESULTS

This section will detail and analyze the results for each
challenge participant.

A. Accuracy

For the 2D methods, Table I provides the overarching
summary. Of the ranked challenge submissions (non-post-
challenge), Team Medtrack came in first, with a δavg = 76.45.
Team CCG DGIST was second with a δavg = 73.75, and

TABLE II
3D TRACKING ACCURACY COMPARISON. δli INDICATES THE TRACKING

ACCURACY WHERE li IS THE THRESHOLD DEFINED IN PIXELS.

Method δli ↑

li = 2 li = 4 li = 8 li = 16 li = 32 Avg.

Baselines

RAFT-
Stereo

13.94 36.16 60.40 79.80 91.51 56.36

MICCAI
Submis-
sions

JMEES 25.70 45.40 65.31 81.16 91.01 61.71
ICVS 2AI 27.88 55.15 75.96 91.11 97.58 69.54

Fig. 11. Efficiency Result of ICVS 2AI’s method.

Team Jmees came in third with a δavg = 68.99. The overall
best performing method was MFT [16].

For the 3D methods, refer to the summary Table II. Of the
ranked challenge submissions, Team ICVS 2AI came in first
with a δavg = 69.54, and Team Jmees came in second with a
δavg = 61.71.

B. Efficiency
In this section we summarize the efficiency results. Only the

ICVS 2AI team participated in the efficiency component. To
assess their algorithm’s efficiency, we evaluated selected test
cases from our dataset, measuring the mean, 95th percentile,
and 99th percentile latencies on an NVIDIA A100 GPU. The
final latency score averaged across our test cases was 144.63
ms, corresponding to 7 FPS, which is within the acceptable
range for many surgical point-tracking applications. Fig. 11
shows the latencies of the ICVS 2AI submission for 5 test
sequences. The maximum latency remains below 200 ms, a
critical threshold in this inaugural efficiency evaluation in this
year’s challenge. Broader participation in the efficiency com-
ponent would provide deeper insights into the deployability of
competing algorithms.

VI. DISCUSSION

In this section, we will summarize the numerical results
from the challenge in Section VI-A, by takeaways from
organizing the challenge in Section VI-B, and finish with
suggestions for future algorithms and areas we believe could
be useful in Section VI-C.
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A. Accuracy and Efficiency

Here we discuss the 2D results, followed by the 3D results
and efficiency.

The most accurate method in the 2D component of the
challenge was the baseline MFT [16] method. In terms of
best fine-grained performance (at δ = 4), the baseline MFT
also achieved the highest accuracy. This could be due to the
intrinsic memory of MFT which allows it to search back to the
first frame. Methods that encountered difficulty over sequences
in this challenge were those which do not support longer win-
dow recovery (RAFT (baseline), SEA-RAFT (Team SRV)).
Frame-wise methods (or methods with short windows) still
attained reasonable performance when integrating occlusion
masks (Team ICVS 2AI).

Regarding long-term methods, CCG DGIST addressed long
term tracking by having two branches to decide between an
optical flow method and a homography transformation to re-
detect points after they may be occluded. To deal with longer
occlusion, Team Medtrack uses MFT along with CoTracker.
They alter the sliding window of CoTracker to include the
initial frame to help performance under long time spans.
In Medtrack’s submission, MFT is used to calculate initial
positions. The optical flow for MFT is also filtered to remove
outliers in non-smooth regions using the spatial gradients of
the flow map. The candidates from MFT are then used as initial
points to seed CoTracker. Team Medtrack attained the second
highest score among the methods submitted for 2D accuracy
tracking. The TAP-Endo method submitted by Team CUHK
extends SEA-RAFT [23] with an occlusion and uncertainty
module and fine-tunes it using a semi-supervised strategy.
They integrate their method into the MFT architecture for
robust point tracking with a longer temporal context allowing
them to achieve the highest accuracy of all the submissions
for the task of 2D tracking.

Interestingly, Team MFTIQ [20] (ROMA/SEA-RAFT) and
TAP-Endo both achieved competitive performance but did
not surpass the baseline MFT. TAP-Endo (Team CUHK)
employed a domain-adaptation strategy, yet still fell short
of outperforming the baseline. This outcome may indicate
that existing backbone optical flow architectures and refine-
ment strategies, generalize suboptimally or inconsistently to
the unique challenges posed by the endoscopic domain. We
expect further exploration and optimization in this area could
significantly enhance performance and robustness in future.

Notably, most of these methods do not train a long-term
tracking or occlusion management method. ICVS trains an
optical flow on SurgT, and UBC RCL trains an optical flow
method on image pairs. Although Medtrack uses CoTracker
with the start frame as the first frame in each sliding window,
the CoTracker model is not trained under these surgical sce-
narios. It could be expected that more focus on the occlusion
management and re-detection could improve performance in
future submissions.

In terms of 3D methods, Team ICVS 2AI had the most
accurate submission. Team ICVS 2AI tracks in 2D and uses
this 2D track along with estimated depth to obtain 3D lo-
cations. Team Jmees tracks a point in each eye, and uses

the disparity between these points to backproject. In terms of
future work, a method could be envisioned which either: tracks
directly in 3D, or communicates between both the left and
right tracks via a transformer-like model or a simpler classical
consensus filtering. In the future, methods that filter or use both
frames should be able produce better 3D results in addition
to improving tracking in the 2D frame space. We believe this
since more information is available in the stereo data. As a
simple example, a point may be occluded in one eye but not
in the other.

Finally, for the efficiency component, although there was
only one submission, the emphasis on efficiency in the submis-
sions helped to ensure that the methods are clinically feasible.
This component alongside the constraint that methods must
run in a streaming manner, in which they are unable to see
future frames, helps to focus the challenge on algorithms that
could be usable in a surgical system.

B. Challenge Takeaways
We have a few takeaways from the challenge organization

as a whole, and we will summarize them here. For future
iterations, we will make the docker submission process more
clear in order to better enable quick evaluation without having
to debug submissions with challenge teams. Some teams
ran into memory issues with validation on the STIROrig
dataset since the dataloader we provide loads videos fully into
memory. Providing a simpler and more lightweight evaluation
code structure should help to fix this.

In terms of 3D participation and efficiency, we saw lower
participation, and believe this is due to the ease of use for
implementing methods within these frameworks. In the future,
we will look to provide more detailed documentation for every
component of the challenge.

C. Algorithmic Directions
For future methods, here is a brief list of ideas that can be

focused on:
• Using pseudolabelling, synthetic data augmentation, stu-

dent teacher models applied to surgical scenarios (ie.
CoTracker3 [10], Bootstap [5])

• Pretraining models to use surgical features (Masked-
autoencoders, self-supervision, etc.)

• Using stereo data to improve tracking, rather than track-
ing in a single eye (left/right).

• Training efficient models for long-term tracking, and
relocalization.

VII. CONCLUSION

In this paper, we summarized and discussed the design,
data, participation, and results from the 2024 STIR Challenge,
which was organized as a part of EndoVis at MICCAI 2024.
We expect this challenge, and the publicly released test dataset
will serve as a high-quality resource for methods to test,
compare, and iterate on algorithms for tissue tracking and
other applications. The field of image guidance in surgery,
and many other applications depend on accurate methods, and
see this work as a key step in continuing to enable surgical
applications.
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