
PAStime: Progress-aware Scheduling for
Time-critical Computing

Soham Sinha
Department of Computer Science

Boston University
Boston, USA

soham1@bu.edu

Richard West
Department of Computer Science

Boston University
Boston, USA

richwest@bu.edu

Abstract—Over-estimation of worst-case execution times
(WCETs) of real-time tasks leads to poor resource utilization.
In a mixed-criticality system (MCS), the over-provisioning of
CPU time to accommodate the WCETs of highly critical tasks
can lead to degraded service for less critical tasks. In this paper,
we present PAStime, a novel approach to monitor and adapt the
runtime progress of highly time-critical applications, to allow
for improved service to lower criticality tasks. In PAStime, CPU
time is allocated to time-critical tasks according to the delays they
experience as they progress through their control flow graphs.
This ensures that as much time as possible is made available to
improve the Quality-of-Service of less critical tasks, while high-
criticality tasks are compensated after their delays.

In this paper, we integrate PAStime with Adaptive Mixed-
criticality (AMC) scheduling. The LO-mode budget of a high-
criticality task is adjusted according to the delay observed at
execution checkpoints. Using LITMUSRT to implement both
AMC and AMC-PAStime, we observe that AMC-PAStime sig-
nificantly improves the utilization of low-criticality tasks while
guaranteeing service to high-criticality tasks.

I. INTRODUCTION

In real-time systems, computing resources are typically
allocated according to each task’s worst-case execution time
(WCET), to ensure timing constraints are met. However,
worst-case conditions for an application are rather rare, result-
ing in poor resource utilization. Previous research work [49]
shows that the worst-cases lie at the tiny tail-end of the
probability distribution curve of the execution times for many
programs. Instead, average-case execution times are signifi-
cantly more likely, taking a fraction of the worst-case times.

Mixed-criticality systems (MCSs) provide a way to avoid
over-estimation of resource needs, by considering the schedu-
lability of tasks according to different estimates of their
execution times at different criticality or assurance levels [48].
Higher criticality tasks are afforded more execution time at
the cost of less time for lower criticality tasks, when it is
impossible to meet all task timing constraints. There have been
multiple proposals [9], [10], [14], [18] since Vestal’s work on
MCSs [48]. Most prior work focuses on meeting task dead-
lines and ignores Quality-of-Service (QoS) metrics [47] such
as frames-per-second or average utilization. Although timely
completion is most important for high-criticality applications,
QoS is a significant metric for lower criticality tasks [13],
[37], [44]. This has motivated our work on PAStime (Progress-

Aware Scheduling for time-critical computing), to maximize
the QoS for low-criticality tasks.

In PAStime, we first identify a checkpoint in a high-
criticality application at an intermediate stage in its source
code. The application is then profiled offline to measure
the time to reach the marked checkpoint. Using this timing
data, the application evaluates its progress at the checkpoint
during runtime. Based on the delay at the checkpoint, PAStime
predicts the expected execution time of a high-criticality appli-
cation. We consequently adjust the runtime of the application,
given that the change does not hamper schedulability of co-
running tasks. If at runtime, a highly critical program is
deemed to be making insufficient progress, it is given greater
CPU time.

We combine PAStime with Adaptive Mixed-criticality
(AMC) scheduling [10], to improve the performance of low-
criticality tasks. In AMC, the system is started in LO-mode,
where all tasks are scheduled with their LO-mode budgets.
When a high-criticality task runs for more than its LO-mode
budget, the system is switched to HI-mode. In HI-mode,
all low-criticality tasks are stopped, and the high-criticality
tasks are given their increased HI-mode budgets. However,
switching to HI-mode should be avoided as much as possible
[8], because it affects the performance of low-criticality tasks,
which are not executed in HI-mode.

Several works extend the mixed-criticality task model to
improve the performance of low-criticality tasks, such as
providing an offline extra budget allowance to the high-
criticality tasks [41], and estimating multiple budgets [36],
[39] and periods [42], [44] for low-criticality tasks. However,
these approaches do not utilize runtime information.

We extend AMC with PAStime to avoid mode switches,
by dynamically adjusting the LO-mode budget for a high-
criticality task, based on progress to execution checkpoints.
Then, we predict the expected execution time of a high-
criticality task based on the observed delay until a checkpoint.
We carry out an efficient online schedulability test to determine
whether we can increase the LO-mode budget of the delayed
high-criticality task to our predicted execution time. In case
the taskset is still schedulable with the increased budget, we
extend the LO-mode budget of the high-criticality task to the
predicted execution time. When a high-criticality task finishes

1

within its extended execution budget, we keep the system
in LO-mode and avoid a mode switch that would otherwise
happen in AMC scheduling. Thus, PAStime improves the QoS
of low-criticality tasks by keeping the system in LO-mode for
a longer time.

Factors such as I/O events and hardware micro-architectural
delays lead to actual execution times exceeding those predicted
by PAStime. Any high criticality task running at the end of its
predicted execution time causes a timer interrupt to switch the
system into HI-mode, as is the case with AMC scheduling.
Thus, a high-criticality task never misses its deadline.

Contributions: The central idea of PAStime is to help
the OS make scheduling decisions based on a program’s
runtime progress. We implement both AMC and a PAStime
extension to AMC scheduling in LITMUSRT [12], [16]. We
test our implementation with real-world applications: an object
classification application from the Darknet neural network
framework [40], and an MPEG video decoder [2].

We show that PAStime increases the average utilization of
low-criticality tasks by 1.5 to 9 times for 2 to 20 tasks. We
also demonstrate that our implementation of AMC-PAStime
has minimal and bounded additional overhead in LITMUSRT.

We provide a C library for PAStime to instrument check-
points in high-criticality programs. In addition, we modify
the LLVM compiler [30] to automatically identify potential
locations of checkpoints during profiling for simple time-
critical applications.

The next section describes our approach to PAStime. Sec-
tion III details the theoretical background behind AMC and
its extension with PAStime. Section IV describes the design
and implementation of PAStime, which is then evaluated
in Section V. Finally, we describe related work, followed
by conclusions and future work in Sections VI and VII,
respectively.

II. APPROACH

Compiler infrastructures such as LLVM are capable of
producing a program’s control flow graph (CFG). A CFG
represents the interconnection between multiple Basic Blocks
(BBs), where a block is a sequence of straight-line code with-
out any internal branches. However, CFGs are not typically
utilized by an OS to manage time for different computing
resources, in spite of being a rich source of analytical in-
formation about a program. Consequently, current OSs are
oblivious to a program’s computing requirements (e.g., CPU
utilization) at different points in its execution. A developer of
an application can, instead, help the OS make decisions related
to resource management, by providing runtime information
about a program at certain points in its source code.

PAStime dynamically decides a program’s execution budget
based on its runtime progress and theoretical analysis of the
allowable delay at specific checkpoint locations. At runtime,
PAStime measures the time to reach a checkpoint from the
start of a task, and then compares that time to a pre-profiled
reference value. The execution budget for the task is then
adjusted according to actual progress.

Fig. 1: CFG and average estimates of a program

BB1:
start

BB2:
for loop
(10 times)

BB3

BB6:
for loop
(20 times)

BB5
BB4

BB7

BB8

500ms

2000ms

Figure 1 shows the CFG for a program with two loops,
starting at BB2 and BB6. In this example, PAStime inserts a
checkpoint between the two loops at the end of BB5. BB5 is
a potentially good location for a checkpoint because there is
one loop before and after this BB, providing an opportunity
to increase the execution budget to compensate for the delay
until BB5.

Suppose that we derive the LO-mode budget of the whole
program to be 2000 ms by profiling, and the time to reach the
checkpoint at BB5 is 500 ms. The program is then executed
in the presence of other tasks. The execution budget at the
checkpoint (in BB5) is adjusted, to account for the program’s
actual runtime progress. For example, at the checkpoint in
BB5, suppose the program experiences a delay of 100 ms. This
means that the checkpoint in BB5 is reached in 600 ms, instead
of the expected 500 ms. Therefore, the program is delayed
by (100500 × 100=) 20%. Then, we predict the total execution
time of 2000 ms to be (2000 + 20%× 2000=) 2400 ms. This
is based on the runtime information until the checkpoint in
BB5 which has shown a delay of 100 ms. Hence, we need to
increase the program’s execution budget by 400 ms. PAStime
uses this available information until a checkpoint to extend the
LO-mode budget of a high-criticality application.

A. Benefits in Adaptive Mixed-criticality Scheduling

We see progress-aware scheduling as being beneficial in
mixed-criticality systems. Adaptive Mixed-criticality schedul-
ing [10] is the state-of-the-art fixed-priority scheduling policy
for Mixed-criticality tasksets. In AMC, a system is first
initialized to run in LO-mode. In LO-mode, all the tasks are
executed with their LO-mode execution budgets. Whenever a
high-criticality task overruns its LO-mode budget, the system
is switched to HI-mode. In HI-mode, all low-criticality tasks
are discarded (or given reduced execution time [8], [36]), and
the high-criticality tasks are given increased HI-mode budgets.
The system’s switch to HI-mode therefore impacts the QoS for
low-criticality tasks.

By combing PAStime with AMC (to yield AMC-PAStime),
we extend the LO-mode budget of a high-criticality task to
its predicted execution time at a checkpoint. Going back to
our previous example in Figure 1, we try to extend the LO-
mode budget of the task by 400 ms. We carry out an online

2

schedulability test to determine if we can extend the task’s
LO-mode budget by 400 ms. If the whole taskset is still
schedulable after an extension of the LO-mode budget of
the delayed high-criticality task, the increment in the task’s
LO-mode budget is approved. We let the task run until the
extended time and keep the system in LO-mode. In case the
high-criticality task finishes within its extended time, we avoid
an unnecessary switch to HI-mode. Thus, the low-criticality
tasks run for an extended period of time and do not suffer
degraded CPU utilization and QoS, as occurs with AMC.

In case the task does not finish within the predicted time,
then the system is changed to HI-mode, and low-criticality
tasks are finally dropped. This behavior is identical to AMC,
and every high-criticality task still finishes within its own
deadline. Therefore, we improve the QoS of the low-criticality
tasks when the high-criticality tasks finish within their ex-
tended LO-mode budgets, and otherwise, we fall back to
AMC. When there is no delay at a checkpoint, we do not
change a task’s LO-mode budget.

III. THEORETICAL BACKGROUND

In this section, we provide a response time analysis for
AMC-PAStime by extending the analysis for AMC scheduling.
We also describe details about the online schedulability test
based on the response time values.

A. Schedulability Analysis for AMC and PAStime

1) Task Model: We use the same AMC task model as
described by Baruah et al [10]. Without loss of generality,
we restrict ourselves to two criticality levels - LO and HI.
Each task, τi, has five parameters: Ci(LO) - LO-mode runtime
budget, Ci(HI) - HI-mode runtime budget, Di - deadline, Ti
- period, and Li - criticality level of a task, which is either
high (HC) or low (LC). We assume each task’s deadline,
Di, is equal to its period, Ti. A HC task has two budgets:
Ci(LO) for LO-mode assurance and Ci(HI) (> Ci(LO))
for HI-mode assurance. A LC task has only one budget of
Ci(LO) for LO-mode assurance.

2) Scheduling Policy: Both AMC and AMC-PAStime use
the same task priority ordering, based on Audsley’s priority
assignment algorithm [5]. If a task’s response time for a given
priority order is less than its period, then the task is deemed
schedulable. The details of the priority assignment strategy
are discussed in previous research work [6], [10]. We do not
change the priority ordering of the tasks at runtime.

AMC-PAStime initializes a system in LO-mode with all
tasks assigned their LO-mode budgets. We extend a high-
criticality task’s LO-mode budget at a checkpoint if the task is
lagging behind its expected progress, as long as the extension
does not hamper the schedulability of the delayed task and
all the lower or equal priority tasks. An increase to the LO-
mode budget of a task that violates its own or other task
schedulability is not allowed. If a high-criticality task has not
finished its execution even after its extended LO-mode budget,
then the system is switched to HI-mode.

3) Response Time Analysis: The AMC response time recur-
rence equations for (1) all tasks in LO-mode, (2) HC tasks in
HI-mode, and (3) HC tasks during mode-switches are shown
in Equation 1, 2 and 3, respectively. hp(i) is the set of tasks
with priorities higher than or equal to that of τi. Likewise,
hpHC(i) and hpLC(i) are the set of high- and low-criticality
tasks, respectively, with priorities higher than or equal to the
priority of τi.

AMC provides two analyses for mode switches: AMC-
response-time-bound (AMC-rtb) and AMC-maximum. We use
AMC-rtb for our analysis, as AMC-maximum is computa-
tionally more expensive. However, AMC-rtb does not allow
a taskset which is not schedulable by AMC-maximum. There-
fore, AMC-rtb is sufficient for schedulability.

RLOi = Ci(LO) +
∑

τj∈hp(i)

dR
LO
i

Tj
e × Cj(LO) (1)

RHIi = Ci(HI) +
∑

τj∈hpHC(i)

dR
HI
i

Tj
e × Cj(HI) (2)

R∗i = Ci(HI) +
∑

τj∈hpHC(i)

dR
∗
i

Tj
e × Cj(HI)

+
∑

τj∈hpLC(i)

dR
LO
i

Tj
e × Cj(LO)

(3)

With AMC-PAStime, if a high-criticality task, τi, is delayed
by X% at a checkpoint, compared to its pre-profiled progress,
then τi’s budget is tentatively increased from Ci(LO) to
C ′i(LO). C ′i(LO) = f(Ci(LO), X). Here, f(Ci(LO), X)
is a function to predict the delayed total execution time,
given that the observed delay until the checkpoint is X . For
example, by a linear extrapolation of the observed delay of X
until a checkpoint up to the full Ci(LO), f(Ci(LO), X) =(
Ci(LO) +

Ci(LO)×X
100

)
. f could also depend on the other

hardware microarchitectural factors like caches. We show
multiple execution time prediction techniques in Section V.

An online schedulability test then calculates the the ex-
tended LO-mode response time, RLO-ext

i , for τi, using Equa-
tion 4. Similarly, R∗-ext

i is calculated using Equation 5. Equa-
tions 4 and 5 are extensions of Equations 1 and 3. AMC-
PAStime checks at runtime whether both RLO-ext

i and R∗-ext
i are

less than or equal to τi’s period to determine its schedulability.
The new response times are then calculated for all tasks

in LO-mode with priorities less than or equal to τi, using
Equation 4. Similarly, new response times are calculated for
all HC tasks with lower or equal priority to τi during a mode
switch, using Equation 5. If all newly calculated response
times are less than or equal to the respective task periods, the
system is schedulable. In this case, AMC-PAStime approves
the LO-mode budget extension to τi. If the system is not
schedulable, then τi’s budget remains Ci(LO).

RLO-ext
i = C ′i(LO) +

∑
τj∈hp(i)

dR
LO-ext
i

Tj
e × C ′j(LO) (4)

3

R∗-ext
i = Ci(HI) +

∑
τj∈hpHC(i)

dR
∗-ext
i

Tj
e × Cj(HI)

+
∑

τj∈hpLC(i)

dR
LO-ext
i

Tj
e × Cj(LO)

(5)

AMC-PAStime only extends the LO-mode budget of a
delayed HC task for its current job. When a new job for the
same HC task is dispatched, it starts with its original LO-mode
budget. If another request for an extension in LO-mode for
the same task appears, AMC-PAStime tests the schedulability
with the maximum among the requested extended budgets.
The system keeps track of the maximum extended budget for
a task and uses that value for online schedulability testing.
We explain the AMC-PAStime scheduling scheme with an
example taskset in Table I.

TABLE I: A mixed-criticality taskset example

Task Type C(LO) C(HI) T Pr RLO R∗

τ1 HC 3 6 10 1 3 6
τ2 LC 2 - 9 2 5 -
τ3 HC 5 10 50 3 15 38

Suppose, task τ1 is delayed by 66% at a checkpoint in the
task’s source code. PAStime will then try to extend the budget
by (3× 66

100) ≈ 2 time units. Therefore, the potential extended
budget C ′1(LO) for τ1 would be (3 + 2) = 5 time units.
PAStime will calculate the response times, RLO-ext

i and R∗-ext
i ,

for τ1 and the lower priority tasks τ2 and τ3. RLO-ext
1 would

just be 5, and R∗-ext
1 would remain the same as R∗1 = 6, as τ1

is the highest priority task. The new RLO-ext
2 would be 7 (by

Equation 4) which is smaller than its period of 9. Therefore, τ2
would still be schedulable if we extend τ1’s LO-mode budget
from 3 to 5.

For τ3, the new RLO-ext
3 and R∗-ext

3 would be, respectively, 26
(by Equation 4) and 40 (by Equation 5) which are also smaller
than τ3’s period of 50. Therefore, the extended budget of 5
for τ1 would be approved by AMC-PAStime. In conventional
AMC scheduling, the system would be switched to HI-mode if
τ1 did not finish within 3 time units. However, AMC-PAStime
will extend τ1’s LO-mode budget to 5 because of the observed
delay at its checkpoint, so the system is kept in LO-mode.
Consequently, LC task τ2 is allowed to run by AMC-PAStime,
if τ1 finishes before 5 time units. If τ1 does not finish even
after 5 time units, the system would be switched to HI-mode.

In this example, 5 jobs of τ1 are dispatched for every single
job of τ3, as τ3’s period of 50 is 5 times the period of τ1.
Suppose τ1 asks for the 66% increment in its LO-mode budget
for the first job, as we have explained above. In its second job,
τ1 asks for an increment of 33% (1 time unit) in its LO-mode
budget. In this case, we again need to calculate the response
times for all tasks. If we calculate the online response times for
τ2 and τ3 assuming (3 + 1) = 4 time units for C ′1(LO), then
we would not account for the first job of τ1, which potentially
executes for 5 time units. We would need to keep track of the
extended LO-mode budgets for all jobs of τ1, to accurately
calculate online response times for τ2 and τ3.

To avoid the cost of recording all extended LO-mode
budgets for a task, AMC-PAStime simply stores the max-
imum extended budget for a task. When calculating online
response times to check whether to approve an extension to
the LO-mode budget, the system uses the maximum extended
budget of every high-criticality task. This value is stored in
the max_extended_budget variable for each HC task.
Therefore, when τ1 asks for 4 time units as its extended LO-
mode budget in its second job, the system calculates RLO-ext

1 ,
R∗-ext

1 , RLO-ext
2 , RLO-ext

3 , R∗-ext
3 with C ′1(LO) = 5.

AMC-PAStime uses maximum extended budgets to cal-
culate safe upper bounds for online response times. The
max_extended_budget is reset when a task has not
requested a LO-mode budget extension for any of its jobs
dispatched within the maximum period of all tasks.

B. Online Schedulability Test

AMC-PAStime performs an online schedulability test when-
ever a high-criticality task asks for an extension to its LO-
mode budget. The test calculates the response times (RLO-ext

i

and R∗-ext
i) of the delayed high-criticality task and all lower

priority tasks. Then, it checks whether the response times are
less than or equal to the task periods. If any task’s response
time is greater than its period, the online schedulability test
returns false, and the extension in LO-mode for the high-
criticality task is denied. If the schedulability test is successful
the high-criticality task is permitted to run for its extended
budget in LO-mode.

1) Initial Value for Online Response Times Calculation:
Online response time calculations may take significant time,
depending on the number of iterations of Equations 4 and 5.
However, the response time values from Equations 1, 2, 3 are
already calculated offline to determine the schedulability of a
taskset using Audsley’s priority assignment algorithm [5] with
AMC scheduling. Since AMC-PAStime uses the same priority
ordering as AMC scheduling, the offline response times for
schedulability remain same.

AMC-PAStime initializes the online RLO-ext
i in Equation 4

with RLOi + e, where RLOi is calculated offline by Equation 1
and e(> 0) is the extra budget of the delayed task. e is set to
Ci(LO)×X

100 if τi is delayed by X% at its checkpoint.
Since the budget of a delayed task is extended by e, RLO-ext

i

must be greater than or equal to RLOi +e. Hence, this is a good
initial value to start calculating RLO-ext

i online. In Section V,
we establish an upper bound on the total number of iterations
needed to check the schedulability of random tasksets, if the
highest priority task’s budget is extended by different amounts.

2) Details of the Online Test: Algorithm 1 is the pseu-
docode for the online schedulability test. The offline response
time values (RLOi and R∗i) are stored in the timing properties
for each task τi. When a high-criticality task τk is delayed, it
asks for an extension of its LO-mode budget by e time units.

Line 6 in Algorithm 1 determines whether the newly re-
quested extension, e, is more than a previously saved maxi-
mum extended budget for τk. In lines 10–13, the C ′i(LO) is
set to the maximum extended budget for all the lower priority

4

tasks and τk. As we have explained above, it is practically
infeasible to store the execution times of every job of all the
tasks to calculate online response times. Therefore, we store
the maximum extended budget of every task and use this to
calculate response times online. For the currently delayed task,
τk, C ′k(LO) is set to the maximum value of a previously
saved max_extended_budget and the currently requested
Ck(LO) + e. Considering the example in Table I, line 12
would translate to C ′i(LO)=max(5, 4) for the second LO-mode
extension request.

Then, Equation 4 is solved in line 15 by initializing RLO-ext
i

to the RLOi plus extra budget e′ from line 6. If a lower
priority task is a high-criticality task, then R∗-ext

i is calculated
in line 19, with the newly derived value of RLO-ext

i .
The initial value in the recurrence relations is set offline

to significantly decrease the number of online iterations, and
hence overhead, needed to determine taskset schedulability.
In addition, we solve both recurrence relations with an incre-
mental response time algorithm [17] to further minimize the
overhead.

Algorithm 1 Online Schedulability Test
1: Input: tasks - set of all tasks in priority order
2: τk - delayed task
3: e - extra budget for τk
4: Output: true or false
5: function ISBUDGETCHANGEAPPROVED(tasks, τk, e)
6: e′ = max(τk.max_extended_budget, Ck(LO) + e)−
7: Ck(LO)
8: for each task τi in {τk ∪ lower priority tasks than τk
9: in tasks} do

10: C ′i(LO) = τi.max_extended_budget
11: if τi is τk then
12: C ′i(LO) =max(C ′i(LO), Ci(LO) + e)
13: end if
14: Initialize RLO-ext

i for Equation 4 with RLOi + e′

15: Solve Equation 4
16: if RLO-ext

i ≤ Ti then
17: if τi is high-criticality then
18: Initialize R∗-ext

i for Equation 4 with R∗i
19: Solve Equation 5 with the new RLO-ext

i

20: if R∗-ext
i > Ti then Return false

21: end if
22: end if
23: else Return false
24: end if
25: end for
26: τk.max_extended_budget =
27: max(Ck(LO) + e, τk.max_extended_budget)
28: Return true
29: end function

IV. DESIGN AND IMPLEMENTATION OF PASTIME

In this section, we first describe the overall design of
AMC-PAStime in LITMUSRT [12], [16]. This is followed

by a description of how checkpoints are instrumented in an
application’s source code. We then show the algorithm to
determine and insert checkpoints, which is integrated into
the LLVM compiler infrastructure. A high-criticality task
requires profiling to determine the placement of checkpoints,
before it is ready for execution with other tasks. We describe
how the profiling and execution of a high-criticality task is
performed, along with the scheduling mechanism in PAStime.
The source code for PAStime in LITMUSRT will be made
publicly available.

A. Design Overview

AMC-PAStime has two phases: a Profiling phase for high-
criticality tasks, and an Execution phase. In the Profiling
phase, one or more checkpoints are placed at key stages in
a program’s source code. The average time to reach each
checkpoint is then measured. After profiling all high-criticality
tasks, the system switches into the Execution phase. The time
taken to reach each checkpoint in every high-criticality task is
observed by the system at runtime. Each observed time is com-
pared against the profiled time to reach the same checkpoint.
Any high-criticality task lagging behind its profiled time to
a checkpoint is tentatively given increased LO-mode budget,
according to the approach described in Section III.

Fig. 2: Implementation of AMC-PAStime in LITMUSRT

4c. Returns spent budget

1. Compile

4b. At a checkpoint, asks how
much budget is spent

Application
Source
Code

Checkpoint-ed
Executable for

profiling

2. Run
Checkpoint timing
data in a header file

Checkpoint-ed
Executable for

deployment

3. Compile

LITMUSRT

Kernel

4. Execute

4a. Starts running a job

4d. Compares with reference
in header file and asks for
LO-mode extension, if needed

4f. Finishes a job

4e. Approves or
disapproves

(Execution phase)

(Profiling phase)

Figure 2 shows an overview of the design of AMC-PAStime
in LITMUSRT. Step 1 is the compilation of a high-criticality
application’s source code in the Profiling phase, which uses
our compilation procedure [38]. The compiled executable has
checkpoints embedded into its code for profiling. Step 2
executes the program to generate timing metadata for each
checkpoint in a timeinfo.h file. Step 2 is performed multiple
times with different program inputs to generate an average
time to reach each checkpoint.

Step 3 compiles the source code along with the checkpoint
timing metadata header file (timeinfo.h) for the Execution
phase, producing a binary image that is used for deployment
under working conditions. Finally, Step 4 runs the code in
the Execution phase along with all other tasks. At some point

5

after the system is started, Step 4a starts running a job for a
high-criticality task. When a checkpoint is reached, Step 4b
asks the LITMUSRT kernel how much budget it has consumed.
Step 4c returns the spent budget from the LITMUSRT kernel
to the application.

After receiving the spent budget, tspent, the application com-
pares it to the reference timing, tref, for the checkpoint from
the timeinfo.h header file. It calculates the extra budget that it
needs in LO-mode, using Equation 6. If e > 0 in the equation,
Step 4d asks LITMUSRT for extra budget. The AMC-PAStime
scheduling policy in the LITMUSRT kernel runs an online
schedulability test using Algorithm 1. If Algorithm 1 returns
true, the LO-mode budget of the current task is extended by
e. If the algorithm returns false, the task budget is not altered.
Finally, Step 4f finishes the current job of the running task.

e =
Ci(LO)× (tspent − tref)

tref
(6)

B. Checkpoint Instrumentation and Detection

A checkpoint is a key stage in an application’s code, used
to evaluate the progress of a currently running task. Well
placed checkpoints balance the number of instructions that
are executed prior to the checkpoint, with those that remain to
the next checkpoint or the end of the program. Ideally, there
should be a meaningful number of instructions leading up to
a checkpoint to determine progress. Likewise, there should
be sufficient instructions after a checkpoint to increase the
likelihood that a task is adequately compensated for execution
delays using an extended budget.

A developer of a high-criticality application finds a potential
checkpoint location in the program’s source code for its
Execution phase, after trying out multiple locations in the
Profiling phase. PAStime includes a development library to
instrument checkpoints for the two different phases. Additional
modifications to the LLVM compiler [30] are used to detect
and instrument checkpoints in the Profiling phase.

1) Checkpoint Library: We have developed a C library to
instrument checkpoints in the two PAStime phases. The main
purpose of the library is to generate the necessary checkpoint
timing information during the Profiling phase and then request
a task’s extended LO-mode budget from the LITMUSRT kernel
during the Execution phase.

In the Profiling phase, a noteTime function call from
our library is inserted into the application code at a desired
checkpoint. noteTime takes a unique ID for each checkpoint.
The function logs the time to reach that checkpoint in the
source code since the start of a job. The average of multiple
such timing entries is saved in timeinfo.h after the Profiling
phase.

During the Execution phase, a preprocessor macro called
EXTEND_BUDGET is inserted at a checkpoint. This macro
obtains the spent budget from the LITMUSRT kernel via
a get_current_budget system call. Then, it compares
the spent budget with the reference budget from the time-
info.h header file, and calculates the extra budget using

Equation 6. If extra budget is needed, the macro makes a
set_rt_task_param system call.

2) Manually Inserted Checkpoint: A developer may at-
tempt various strategies to identify a key stage [15], [23], [46]
of an application to instrument a checkpoint. The developer
uses either the noteTime function for the Profiling phase,
or the EXTEND_BUDGET macro for the Execution phase to
instrument a checkpoint. Checkpoints should generally be
avoided inside tight loops. Visiting a checkpoint every loop
iteration incurs a small overhead that is accumulated across
multiple iterations.

3) Automatic Instrumentation of a Checkpoint: We have
written a compiler pass in LLVM to automatically instrument
checkpoints for the Profiling phase of PAStime. The instru-
mented code is run in the Profiling phase, and multiple check-
point timing information is generated. Finally, the developer
chooses one such checkpoint for the Execution phase.

The compiler pass automatically inserts checkpoints in the
basic block preceding each loop in a function, except the first
loop. The first loop is excluded so that enough instructions are
executed before a checkpoint to determine meaningful delays.

For nested loops, we consider only the outer loop. Au-
tomatic instrumentation works with only simple program
structures and ignores intersecting loops. LLVM’s LoopInfo
analysis identifies only natural loops [3]. We utilize the
LoopInfo class in our checkpoint instrumentation imple-
mentation.

Algorithm 2 Determine and Insert Checkpoints
1: isLoopBefore: identifies if a loop is in the paths
2: from the starting BB to another BB
3: visited: set of already visited BBs in DFS
4: function INSERTCHECKPOINT(function)
5: startingBB = function.getEntryBlock()
6: DODFS(startingBB)
7: end function
8: function DODFS(currentBB)
9: if currentBB is in visited then return

10: end if
11: LoopID = getLoopFor(currentBB)
12: if LoopID != null then
13: if isLoopBefore[currentBB] ∧
14: isLoopHeader(currentBB) then
15: insert checkpoint before currentBB
16: end if
17: end if
18: insert currentBB in visited
19: for each s in successors of currentBB do
20: DODFS(s)
21: end for
22: end function

a) Checkpoint Location Algorithm: Our algorithm to
identify checkpoint locations for the Profiling phase is given
in Algorithm 2. We start a Depth First Search (DFS) from the
starting Basic Block (BB) of a function, by calling DoDFS

6

in line 6. We check whether a BB is part of a loop using
LoopInfo’s getLoopFor member function. This function
returns a unique LoopID for every new loop. An inner loop
within a nested loop has the same ID as its outer loop. If a
BB is not part of a loop, then it returns null.

If a BB is part of a loop, we first check in line 12 whether
there is any loop before the current loop using a dictionary
isLoopBefore. isLoopBefore is pre-populated for ev-
ery BB in the CFG to indicate whether there is at least one loop
seen in the paths from the starting BB to the current BB. To
pre-populate isLoopBefore, we just check whether there
is a path to a BB from the loop BBs.

Then, in Algorithm 2, we verify that the current BB is
a header of a loop using LoopInfo’s isLoopHeader
member function. A header is the entry-point of a natural loop.
We insert a checkpoint in the predecessor BB of a header.

Finally, if there is at least one loop before the current header
BB, we add a checkpoint before the current BB in line number
13. As natural loops have only one header, we avoid inserting
a checkpoint for any inner loop in nested loops. We continue
the DFS by marking the current BB as visited.

b) Compiler Pass: We have implemented the above algo-
rithm in a compiler pass within LLVM [30], to automatically
detect and instrument appropriate function calls as checkpoints
in a C language program. This uses our previously described
Checkpoint library for the Profiling phase. A developer uses
our modified LLVM compiler with their high-criticality appli-
cation written in C. Our compiler pass operates at the LLVM
Intermediate Representation (IR) level. It takes a piece of IR
logic as input, figures out the points of interest according to the
above algorithm for checkpoints in a particular function, and
generates the instrumented IR. These IRs are compiled into
executable machine code. As the compiler pass operates at the
IR level, it is easily extensible to other high-level languages
and back-ends supported by LLVM.

C. Profiling and Execution Phases

The Profiling phase of PAStime determines viable check-
points for use in the Execution phase, and also the LO-
and HI-mode budgets for a high-criticality application. A
checkpointed program is run multiple times in the Profiling
phase using a set of test cases. The program is allowed to
have multiple test checkpoints, which are either generated
automatically using our modified LLVM compiler, or manually
by a developer. Each checkpoint has a unique ID given to the
checkpoint function call noteTime. We have developed a
Python package to help run the Profiling phase and collect the
average times to reach different checkpoints.

Step 4 in Figure 2 is the start of the Execution phase.
One checkpoint from those generated in the Profiling phase
for a high-criticality application is instrumented with an
EXTEND_BUDGET macro. Although in general it is possible
to use multiple checkpoints within the same application in the
Execution phase, our experience shows that one is sufficient to
improve LO-mode service. Multiple checkpoints add overhead
to the task execution. Moreover, later checkpoints account for

execution delays that make earlier checkpoints redundant, as
long as they are reached before the LO-mode budget expires.

The key issue in deciding on a single checkpoint for the
Execution phase is to ensure it is not placed too late in the
instruction stream. If it is placed too far into the program code
a mode switch may occur before the task’s LO-mode budget is
extended due to delays. We show in Section V-D the effects of
using checkpoints at different locations in a program’s code.

D. Implementation Details in LITMUSRT

As a first step to applying PAStime for use in adaptive
mixed-criticality scheduling, we extended LITMUSRT with
AMC support. This required modifications to the existing
partitioned fixed-priority scheduling policy, to include the
following new variables in the task properties: c_lo, c_hi,
r_lo, r_star, c_extended, max_extended_budget.

Tasks are divided into low- and high-criticality classes. By
default, the HI-mode budget for low-criticality tasks, c_hi, is
set to zero. If desired, we also support a reduced, non-zero HI-
mode execution budget for low-criticality tasks, as discussed
in the work on Imprecise Mixed-criticality scheduling [36].
Task priorities are determined offline, along with all response
times for a system operating in LO-mode (r_lo) and during a
mode switch (r_star). These parameters are then initialized
in the kernel when the system starts executing a set of tasks.

a) Policy for mode switches: A system-wide mode is
initialized in the LITMUSRT kernel. The system is started in
LO-mode, with all tasks assigned their c_lo budgets. When-
ever a high-criticality task is out of its LO-mode budget, an
enforcement timer handler (based on Linux’s high-resolution
timer [34]) is fired, and the system is switched to HI-mode.

For AMC-PAStime, c_extended is the extended LO-
mode budget for a delayed job of a high-criticality task. An
enforcement timer handler is therefore triggered only when a
high-criticality task is still unfinished after the depletion of it
c_extended time.

As Baruah et al. suggest [10], an AMC system switches
back to LO-mode when none of the high-criticality tasks have
been running for more than their LO-mode budgets. In the case
of AMC-PAStime, the system will switch to a lower criticality
level when none of the high-criticality tasks have been running
for more than their extended LO-mode budgets. A list is used
to keep track of which high-criticality tasks complete within
their (extended) LO-mode budgets, to determine when to revert
to a lower system criticality level.

b) LO-mode Budget Extension: A task’s LO-
mode budget is extended by AMC-PAStime by making
a set_rt_task_param system call inside the
EXTEND_BUDGET macro. We have implemented the
task_change_params callback of a LITMUSRT

sched_plugin interface to support runtime adjustment of
task parameters. In the task_change_params callback,
the system runs an online schedulability test according to
Algorithm 1. If the test returns true, the budget extension
is approved, and the enforcement timer for the current task
is adjusted accordingly. The task’s c_extended variable

7

is updated, along with the maximum value of its extended
budget in max_extended_budget.

V. EVALUATION

We test our implementation of AMC and AMC-PAStime
in LITMUSRT with real-world applications on an Intel NUC
Kit [25]. The machine has an Intel Core i7-5557U 3.1GHz
processor with 8GB RAM, running Linux kernel 4.9. We
use two real-world applications in our evaluations: a high-
criticality object classification application from the Darknet
neural network framework [40], and a low-criticality MPEG
video decoder [2]. These applications are chosen for their
relevance to the sorts of applications that might be used in
infotainment and autonomous driving systems.

For object classification, we use the COCO dataset [33]
images for both profiling and execution. For the video decoder
application, we use the Big Buck Bunny video [1] as the input.
We have turned off memory locking with mlock by the user-
space liblitmus library, as multiple object classification
tasks collectively require more RAM than the physical 8GB
machine limit.

A. Task Parameters

Table II shows the LO- and HI-mode budgets for the two
applications. Each object classification task consists of a series
of jobs that classify objects in a single image. Each video
decoder task decodes 30 frames in a single job.

TABLE II: Applications and their budgets

Application C(LO) C(HI)

object classification 345 ms 627 ms
video decoder 250 ms -

The LO-mode budget, C(LO), is the average time that a
task takes to complete its job. In Section V-C, we also present
experiments where we increase our LO-mode budget estimate.
The HI-mode budget, C(HI), accounts for the worst-case
running time of the high-criticality task for any of its jobs.
The LO-mode utilization of each individual task is generated
by the UUnifast algorithm [11]. We then calculate a task’s
period by dividing its LO-mode budget by its utilization.

Figure 3 shows the maximum execution times of 10 high-
criticality object classification tasks in the presence of 10 other
low-criticality video decoder tasks. We see that none of the
tasks exceed the HI-mode budget of 627 ms, which is also the
case in all subsequent experiments. Consequently, none of the
high-criticality tasks miss their deadlines in any of our tests.

B. QoS Improvements for Low-criticality Tasks

We compare the QoS for low-criticality tasks using AMC
and AMC-PAStime in different cases. In every case, each
taskset has an equal number of high-criticality object clas-
sification tasks and low-criticality video decoder tasks. We
experiment with ten schedulable tasksets in all cases except
the base case described below. We run each of the tests ten

Fig. 3: Object classification

1 2 3 4 5 6 7 8 9 10
Task ID

500

550

600

650

M
ax

. E
xe

cu
tio

n
Ti

m
e

(m
s) HI-mode budget

AMC-PAStime
AMC

Fig. 4: Switches to HI-mode

30 60 90 120 150 180
Seconds

0

5

10

15

20

25

30

35

Cu
m

ul
at

iv
e

#
 o

f m
od

e
sw

itc
he

s

AMC
AMC-PAStime

times, and we report the average of the measurements for low-
criticality tasks. As stated earlier, all high-criticality tasks meet
their timing requirements in each case.

1) Base Case - Two Tasks: Our base case is to run one
high-criticality object classification task and one low-criticality
video decoder task for 180 seconds. Here, we set the periods
of both tasks to 1000 ms rather than using the UUnifast
algorithm, yielding a total LO-mode utilization of ~60%.

Figure 5a shows the cumulative number of frames decoded
by the video decoder task. The LO-mode Upper Bound (UB)
line shows the cumulative number of decoded frames if
the system is kept in LO-mode for the full 180 seconds.
This line represents a theoretical upper bound for a decoded
frame playback rate of 30 frames per second over the entire
experimental run.

We see in Figure 5a that AMC-PAStime has a 9–21% in-
crease in the cumulative number of decoded frames compared
to AMC scheduling. The performance of the low-criticality
task is related to the number of HI-mode switches in the
two scheduling policies. Figure 4 shows that AMC-PAStime
decreases the number of HI-mode switches by 35% over the
entire execution run, compared to AMC scheduling.

Fig. 5: Two tasks - Video Decoder performance

30 60 90 120 150 180
Seconds

0k

1k

2k

3k

4k

5k

6k

Cu
m

ul
at

iv
e

#
 o

f F
ra

m
es

LO-mode UB
AMC-PAStime
AMC

(a) Cumulative number of frames

30 60 90 120 150 180
Seconds

10

12

14

16

18

20

22

24

26

Av
g

Ut
ili

za
tio

n
of

 L
C

ta
sk

 (%
)

LO-mode UB
AMC-PAStime
AMC

(b) Average utilization

Although the number of decoded frames is an illustrative
metric for a video decoder’s QoS, the average utilization of
an application is a more generic metric. Average utilization
represents the CPU share a task receives over a period of
time. Figure 5b shows that AMC-PAStime achieves 10% more
utilization on average for the video decoder task, compared
to AMC scheduling. The LO-mode UB line is the maximum
utilization of the video decoder task, which is 25% (i.e.,
C(LO)/Period = 250 ms/1000 ms).

2) Scalability: To test system scalability, we increase the
number of tasks in a taskset up to 20 tasks. As explained
above, we generate the periods of the tasks by distributing the

8

total LO-mode utilization of ~60% to all the tasks using the
UUnifast algorithm. This setup is inspired by the theoretical
parameters in previous mixed-criticality research work [10].
The LO-mode utilization bound for low-criticality tasks re-
mains between 25–35%.

Figure 6 shows the average utilization of the low-criticality
tasks, when the total tasks vary from 2 to 20. Each task in this
case consists of 20 jobs. We see that the average utilization
drops for AMC scheduling as the number of tasks increases.

AMC-PAStime achieves significantly greater average uti-
lization for the low-criticality tasks, by deferring system
switches to HI-mode until much later than with AMC schedul-
ing. This is because the LO-mode budgets for the high-
criticality tasks are extended due to runtime delays.

Table IIIa shows that AMC-PAStime decreases the number
of mode switches by 28–55%. AMC-PAStime’s resistance
to switching into HI-mode allows low-criticality tasks to
make progress. This in turn improves their QoS. In these
experiments, AMC-PAStime improves the utilization of the
low-criticality tasks by a factor of 3, 5 and 9, respectively, for
8, 14 and 20 tasks.

TABLE III: Number of mode switches

tasks AMC AMC-
PAStime

2 4 2
8 9 4
14 7 5
20 5 3

(a) Varying number of tasks

Utilization
(%)

AMC AMC-
PAStime

40 11 4
50 11 4
60 9 4
70 10 5
80 11 9

(b) Varying LO-mode utilization

Fig. 6: Varying # of tasks

2 8 14 20
of Total Tasks

0

5

10

15

20

25

Av
g.

 U
til

iz
at

io
n

of
 L

C
ta

sk
s

(%
)

AMC
AMC-PAStime

Fig. 7: Varying LO-utilization

40 45 50 55 60 65 70 75 80
Initial Total LO-mode Utilization (%)

0

10

20

30

40

50

Av
g.

 U
til

iz
at

io
n

of
 L

C
ta

sk
s

(%
)

LO-mode UB
AMC-PAStime
AMC

3) Varying the Initial Total LO-mode Utilization: In this
test, we vary the initial total LO-mode utilization for 8 tasks
from 40% to 80% by adjusting the periods of all tasks. The
initial utilization does not account for increases caused by LO-
mode budget extensions to high-criticality tasks.

Figure 7 demonstrates that AMC-PAStime improves average
utilization of the low-criticality tasks by more than 3 times,
up to 70% total LO-mode utilization. After that, AMC-
PAStime and AMC scheduling converge to the same average
utilization for low-criticality tasks. This is because there is
insufficient surplus CPU time in LO-mode for AMC-PAStime
to accommodate the extended budget of a high-criticality task.

Therefore, the LO-mode extension requests are disapproved by
AMC-PAStime.

Table IIIb demonstrates that AMC-PAStime improves the
low-criticality tasks’ QoS by reducing the number of mode
switches by ~50% until 70% LO-mode utilization.

We note that the schedulability of random tasksets de-
crease with higher LO-mode utilization in AMC scheduling.
Therefore, many real-world tasksets may not be schedulable
because of their HI-mode utilizations. Thus, AMC-PAStime’s
improved performance is significant for practical use-cases.

Fig. 8: Overestimated C(LO)

+0 +20 +40 +60 +70
Overestimation of LO-runtime (%)

0

10

20

30

40

50

Av
g.

 U
til

iz
at

io
n

of
 L

C
ta

sk
s

(%
)

LO-mode UB
AMC-PAStime
AMC

Fig. 9: Checkpoint location

0.1x 0.4x 0.6x 0.8x
Checkpoint Location

0

2

4

6

8

10

12

#
 o

f M
od

e-
sw

itc
he

s

AMC
AMC-PAStime

C. Estimation of LO-mode Budget
In our evaluations until now, we estimate a LO-mode budget

based on the average execution time of the high-criticality
object classification application. In the next set of experiments,
we estimate the LO-mode budget of a high-criticality task to
be a certain percentage above the average profiled execution
time. An increased LO-mode budget for high-criticality tasks
benefits AMC scheduling. This is because high-criticality tasks
are now given more time to complete in LO-mode, and
therefore low-criticality tasks will still be able to execute as
well. As a result, the utilization of low-criticality tasks is able
to increase.

Suppose that C(LO) is an average execution time esti-
mate for the LO-mode budget of a high-criticality task. Let
(C(LO) + o) be an overestimate of the LO-mode budget. As
before, AMC-PAStime detects an X% lag at a checkpoint and
predicts the total execution time to be C(LO) + e, where e
is derived from Equation 6. If the actual LO-mode budget is
(C(LO)+o) then AMC-PAStime requests for an extra budget
of (e− o), assuming (e− o) > 0.

Figure 8 shows that AMC-PAStime still improves utilization
for the low-criticality tasks by more than a factor of 3 up to
an overestimation of 40%. Overestimation helps in reducing
the number of mode switches for AMC scheduling after 40%,
as high-criticality tasks have larger budgets in LO-mode.

There is no improvement by AMC scheduling after 60%
LO-mode budget overestimation. AMC-PAStime also shows
no benefits with increased overestimation, because the LO-
mode budget extensions are disapproved by the online schedu-
lability test. Therefore, the system is switched to HI-mode by
an overrun of a high-criticality task.

D. Checkpoint Location
We use our modified LLVM compiler in the Profiling

phase to determine a viable checkpoint for the high-criticality

9

Fig. 10: Prediction accuracy

1 2 3 4 5 6 7 8 9 10
Job ID

350

400

450

500

550

600

650

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Predicted Actual

Fig. 11: Offline iterations

10 20 30 40 50 60 70 80
Extra LO-runtime Demand (%)

0

20

40

60

80

100

120

#
 o

f I
te

ra
tio

ns
 (O

ffl
in

e)

Approved
Disapproved

Fig. 12: Online iterations

0 40 80 120 160 200 240
Seconds

0

20

40

60

80

100

120

#
 o

f I
te

ra
tio

ns Approved
Disapproved
Offline Bound

Fig. 13: Budget extension

2 8 14 20
of Total Tasks

0

2

4

6

8

10

12

14

O
ve

rh
ea

d
(µ

s)

Max
Average

object classification task. We instrument checkpoints in the
forward_network function of the Darknet neural network
module. We consider four checkpoint locations in the Profiling
phase, which are both automatically and manually instru-
mented. In the Execution phase, we measure performance
for each of these checkpoint locations. Figure 9 shows the
variation in the number of mode switches against the location
of a checkpoint. The x-axis is the approximated division point
of a checkpoint location with respect to LO-mode budget. For
example, 0.1× means that the checkpoint is at (0.1×C(LO)).

We see that the number of mode switches decreases if the
location of a checkpoint is more towards the middle of the
code. However, a checkpoint near the start and the end of the
source code have nearly the same number of mode switches,
as with AMC scheduling. A checkpoint near the beginning of
a program is not able to capture sufficient delay to increase the
LO-mode budget enough to prevent a mode switch. Likewise,
a checkpoint near the end of a program is often too late.
A HI-mode switch may occur before the high-criticality task
even reaches its checkpoint. Hence, a checkpoint at 0.8× in
the source code of a program reduces the number of mode
switches by just 1.

E. Effectiveness of a Checkpoint

We now investigate whether a checkpoint is effective in
detecting a delayed high-criticality object classification task.
We compare the predicted and actual times taken by the high-
criticality tasks when LO-mode is extended by AMC-PAStime.
This experiment is performed with 8 tasks for 40 jobs each.
The initial total LO-mode utilization is 60%, before applying
budget extensions.

We show ten of the extended jobs in Figure 10. We see that
the predicted execution times are close to the actual budget
spent. The predicted times are higher than the spent budgets by
just 0.88% on average for this experiment, when the predicted
times are more than the actually spent budgets. In Figure 10,
Job ID 6, 8 and 10 show lower predicted times than the actual
spent budgets. For these jobs, the system is switched to HI-
mode because the extended LO-mode is not enough for a task
to complete its job. In these cases, the predicted times are
smaller than the spent budgets by 0.49%.

This experiment shows that the checkpoint is effectively
being used to predict the execution time of a high-criticality
task in most cases. The budget extensions are a reasonable
estimate of the actual task requirements.

F. Overheads

The main overhead of AMC-PAStime over AMC is the
online schedulability test. We first derive an upper bound
on this overhead by offline analysis and compare with the
experimental measurements.

1) Offline Upper Bound: Our offline upper bound is the to-
tal number of iterations in solving the response time recurrence
relations during the schedulability test in AMC-PAStime. We
generate 500 random tasksets of 20 tasks for different initial
LO-mode utilizations. Initial LO-mode utilization ranges from
40% to 90%. The utilization of each individual task is gener-
ated using the UUnifast algorithm, and each period is taken
from 10 to 1000 simulated time units, as done in previous
work [10], [24]. As our experimental taskset has a criticality

factor (CF =
C(HI)
C(LO)

) of ~1.8, we test with a CF of 1.8 as
well.

Among the schedulable tasks with AMC scheduling, we
increase the demand in LO-mode budget of the highest priority
task. Then, we calculate the total number of iterations needed
to determine whether an extension of the budget can be
approved by an offline version of Algorithm 1. Here, one
iteration is a single update to the response time in any one
of the recurrence equations (in Equations 4 and 5) used to
test for schedulability.

In Figure 11, we show the maximum number of iterations
taken to decide the schedulability of a taskset against a demand
of 10 to 80% extra budget in LO-mode by the highest priority
task. Each point in the figure represents the maximum itera-
tions across the 500 tasksets to either approve or disapprove
of schedulability.

The figure shows the case with 60% initial total LO-mode
utilization (before applying budget extensions). The extra
demand shown on the x-axis cannot go beyond 80% as the
CF is 1.8. As expected, disapproval takes fewer iterations than
approval of a taskset.

We have carried out offline analyses with other initial total
LO-mode utilizations, as stated above. We have observed the
number of iterations to be as high as 120. Therefore, we set
120 as the highest number of allowed iterations for the online
schedulability test. When the number of iterations exceed 120
at runtime, we disapprove a LO-mode budget extension. This
strategy maintains a safe and known upper bound on the online
overhead of AMC-PAStime.

10

2) Microbenchmarks: Each iteration of a response time cal-
culation has a worst-case time of 1µs, for our implementation
of Algorithm 1 in LITMUSRT. Therefore, we bound the worst-
case delay for the online schedulability test in LITMUSRT at
120µs for our test cases.

Additionally, the worst-case user-space execution time for
our EXTEND_BUDGET macro is 10µs. Hence, the maximum
total overhead of an EXTEND_BUDGET macro call, accounting
for the schedulability test, is 130µs. The 130µs overhead is
factored into the LO-mode extension inside the LITMUSRT

kernel.
Figure 12 shows the number of iterations for the online

schedulability test for a taskset of 20 tasks with 60% initial
total LO-mode utilization. We see that the offline bound of 120
iterations is much higher than the actually observed number of
iterations. Hence, we never need to abandon the schedulability
test because of excessive overheads. In addition, disapproval
takes less time than approval online, which corroborates our
offline observation in Figure 11.

Figure 13 shows the maximum and average times for a
LO-mode budget extension decision by our online version
of Algorithm 1. It demonstrates that the extension approval
decision, along with the schedulability test, takes more time
with increasing number of tasks. However, the maximum
times are still significantly lower than the offline upper bound
of 130µs for 20 tasks. In general, budget extension and
schedulability test overheads can be bounded according to the
number of tasks in the system.

VI. RELATED WORK

The problem of determining tight worst-case execution time
(WCET) bounds for tasks [49] is compounded by timing vari-
ations caused by caches, buses and other hardware features.
Recently, mixed-criticality systems (MCSs) [8]–[10], [14],
[18], [48] have gained popularity as they allow tasks to have
multiple estimates of execution time at different criticality,
or assurance, levels. Baruah et al. proposed Adaptive Mixed
Criticality (AMC) as a fixed-priority scheduling policy for
mixed-criticality systems [10]. AMC dominates other fixed-
priority scheduling schemes, such as Static Mixed-criticality
with Audsley’s priority assignment and Period Transformation
for random tasksets [10], [24].

AMC scheduling affects the QoS of low-criticality tasks
by dropping them in HI-mode. Further research work ex-
plored adjustments to the task model, including stretching
the periods [22], [42]–[45], and using reduced budget in HI-
mode [7], [8], [36], [39], to provide improved service to the
low-criticality tasks. In this paper, we extend the original AMC
task model with a runtime scheduling policy based on the
execution progress of a high-criticality task. Other task models
are complementary to PAStime’s scheduling approach.

Santy et al. proposed the idea of a task allowance [41].
The allowance is statically calculated, and a possible online
implementation of the allowance is provided. In our current
work, we do not compute any allowance offline. Rather, we

dynamically decide whether a task is given extra budget in LO-
mode based on the observed runtime delay at a checkpoint.
PAStime is then able to decide which task’s budget to extend
in LO-mode, given the slack in computational resources [18].
In addition, we provide a working implementation of PAStime,
coupled with AMC, in LITMUSRT.

The work by Kritikakou et al. uses run-time monitoring
and control in mixed-criticality systems, to increase task par-
allelism [27]–[29]. The authors run high- and low-criticality
tasks together and monitor high-criticality tasks at multiple
observations points embedded into their control flow graphs.
If interference from the low-criticality tasks is too prohibitive
for the high-criticality tasks, low-criticality tasks are stopped
to ensure that the high-criticality tasks meet their deadlines.
The authors use static execution time analysis to decide
whether to run the low-criticality tasks after an observation
point in a high-criticality task. In our work, we dynamically
adjust LO-mode budgets of the high-criticality tasks when we
detect delays at intermediate checkpoints. We decide about
the LO-mode budgets based on the observed progress, instead
of using static offline remaining time as used by the other
work. In addition, we have implemented an LLVM compiler
pass to instrument checkpoints in real-world applications,
which have been tested with a PAStime implementation in
LITMUSRT. Notwithstanding, Kritikakou et al. provide an
important WCET analysis using CFGs for high-criticality
tasks.

Previous ideas of progress-based scheduling were proposed
to improve GPU performance [4], [26], fairness among multi-
ple threads [20], [21] and to account for instruction cycles [19].
Most of these works run a task in an isolated environment and
compare its progress to an online parallel execution with other
tasks. Somewhat similar to the motivation behind Jeong et al’s
work [26], we also meet the deadlines of high-criticality tasks.
However, PAStime uses CFGs to monitor progress rather than
application-specific features such as frame processing rates in
multimedia applications as done in the other works.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents PAStime, a scheduling strategy based
on the execution progress of a task. Progress is measured by
observing the time taken for a program to reach a designated
checkpoint in its control flow graph (CFG). We integrate
PAStime in mixed-criticality systems by extending AMC
scheduling. PAStime extends the LO-mode budget of a high-
criticality task based on its observed progress, given that the
extension does not violate the schedulability of any tasks.
We carry out a bounded online schedulability test based on
offline response time values. We also provide the response
time equations for online calculations. Our extension to AMC
scheduling, called AMC-PAStime, is shown to improve the
QoS of low-criticality tasks.

Moreover, we provide an algorithm to detect viable loca-
tions for program checkpoints. We modify the LLVM com-
piler to automatically instrument checkpoints for use in task
profiling and runtime execution.

11

We have implemented both AMC and AMC-PAStime in
LITMUSRT and compared their performance. While both meet
deadlines for all high-criticality tasks, AMC-PAStime im-
proves the average utilization of low-criticality tasks by 1.5–9
times for 2–20 total tasks. For 8 tasks, PAStime increases CPU
time to low-criticality tasks until the system reaches 70% LO-
mode utilization, after which it converges with AMC. AMC-
PAStime is shown to yield improved performance for low-
criticality tasks while reducing the number of mode switches.
It also has a bounded overhead for its online schedulability
test.

In future work, we will explore other uses of progress-aware
scheduling in timing-critical systems. We plan to extend the
Linux kernel SCHED_DEADLINE policy [31], [32], [35] to
support progress-aware scheduling. The aim is to improve the
QoS of non-time-critical tasks in Linux while timing critical
SCHED_DEADLINE tasks meet their deadlines.

We believe that PAStime is applicable to timing-sensitive
cloud computing applications, where it is possible to adjust
power (e.g., via Dynamic Voltage Frequency Scaling) based
on progress. Application of PAStime to domains outside real-
time computing will also be considered in future work.

REFERENCES

[1] “Big Buck Bunny,” https://www.bigbuckbunny.org, 2018.
[2] “FFmpeg Multimedia Framework,” https://www.ffmpeg.org/, 2019.
[3] “LLVM LoopInfo Class,” https://llvm.org/doxygen/LoopInfo_8h_

source.html, Last Accessed: May 2019.
[4] J. Anantpur and R. Govindarajan, “PRO: Progress-aware GPU Warp

Scheduling Algorithm,” in Proceedings of the IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS), 2015, pp. 979–988.

[5] N. C. Audsley, “On Priority Assignment in Fixed Priority Scheduling,”
Information Processing Letters, vol. 79, no. 1, pp. 39–44, 2001.

[6] S. Baruah and A. Burns, “Fixed-priority Scheduling of Dual-criticality
Systems,” in Proceedings of the 21st International conference on Real-
Time Networks and Systems. ACM, 2013, pp. 173–181.

[7] S. Baruah, A. Burns, and Z. Guo, “Scheduling Mixed-criticality Sys-
tems to Guarantee Some Service under All Non-erroneous Behaviors,”
in 2016 28th Euromicro Conference on Real-Time Systems (ECRTS).
IEEE, 2016, pp. 131–138.

[8] S. Baruah, H. Li, and L. Stougie, “Towards the Design of Certifiable
Mixed-criticality Systems,” in Proceedings of the 16th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2010,
pp. 13–22.

[9] S. Baruah and S. Vestal, “Schedulability Analysis of Sporadic Tasks with
Multiple Criticality Specifications,” in Proceedings of the Euromicro
Conference on Real-Time Systems (ECRTS), 2008, pp. 147–155.

[10] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time Analysis for
Mixed Criticality Systems,” in Proceedings of the 32nd IEEE Real-Time
Systems Symposium (RTSS), 2011, pp. 34–43.

[11] E. Bini and G. C. Buttazzo, “Measuring the Performance of Schedula-
bility Tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

[12] B. Brandenburg and J. H. Anderson, “Scheduling and Locking in
Multiprocessor Real-time Operating Systems,” Ph.D. dissertation, PhD
thesis, The University of North Carolina at Chapel Hill, 2011.

[13] A. Burns and S. Baruah, “Towards a more practical model for mixed crit-
icality systems,” in Workshop on Mixed-Criticality Systems (colocated
with RTSS), 2013.

[14] A. Burns and R. I. Davis, “A Survey of Research into Mixed Criticality
Systems,” ACM Comput. Surv., vol. 50, no. 6, pp. 82:1–82:37, Nov.
2017. [Online]. Available: http://doi.acm.org/10.1145/3131347

[15] K. Burr and W. Young, “Combinatorial Test Techniques: Table-based
Automation, Test Generation and Code Coverage,” in Proceedings of
the International Conference on Software Testing Analysis & Review,
1998.

[16] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSRT: A Testbed for Empirically Comparing Real-
time Multiprocessor Schedulers,” in 2006 27th IEEE International Real-
Time Systems Symposium (RTSS’06). IEEE, 2006, pp. 111–126.

[17] R. I. Davis, A. Zabos, and A. Burns, “Efficient Exact Schedulability
Tests for Fixed Priority Real-time Systems,” IEEE Transactions on
Computers, vol. 57, no. 9, pp. 1261–1276, 2008.

[18] D. De Niz, K. Lakshmanan, and R. Rajkumar, “On the Scheduling of
Mixed-criticality Real-time Task Sets,” in Proceedings of the 30th IEEE
Real-Time Systems Symposium (RTSS), 2009, pp. 291–300.

[19] S. Eyerman and L. Eeckhout, “Per-thread Cycle Accounting in SMT
Processors,” ACM Sigplan Notices, vol. 44, no. 3, pp. 133–144, 2009.

[20] J. Feliu, J. Sahuquillo, S. Petit, and J. Duato, “Addressing Fairness in
SMT Multicores with a Progress-aware Scheduler,” in Proceedings of
the IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2015, pp. 187–196.

[21] Feliu, Josue and Sahuquillo, Julio and Petit, Salvador and Duato, Jose,
“Perf&Fair: A Progress-aware Scheduler to Enhance Performance and
Fairness in SMT Multicores,” IEEE Transactions on Computers, vol. 66,
no. 5, pp. 905–911, 2017.

[22] C. Gill, J. Orr, and S. Harris, “Supporting Graceful Degradation through
Elasticity in Mixed-Criticality Federated Scheduling,” in Proc. 6th
Workshop on Mixed Criticality Systems (WMC), RTSS, 2018, pp. 19–24.

[23] Google, “trucov,” https://code.google.com/archive/p/trucov/, 2018.
[24] H.-M. Huang, C. Gill, and C. Lu, “Implementation and Evaluation

of Mixed-criticality Scheduling Approaches for Sporadic Tasks,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 13, no. 4s,
p. 126, 2014.

[25] Intel, “Intel R© NUC Kit NUC6i7KYK (Skull Canyon): Features and
Configurations,” https://www.intel.com/content/www/us/en/products/
docs/boards-kits/nuc/nuc-kit-nuc6i7kyk-features-configurations.html,
2019.

[26] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver, “A QoS-aware
Memory Controller for Dynamically Balancing GPU and CPU Band-
width Use in an MPSoC,” in Proceedings of the 49th annual Design
Automation Conference. ACM, 2012, pp. 850–855.

[27] A. Kritikakou, O. Baldellon, C. Pagetti, C. Rochange, and M. Roy, “Run-
time Control to Increase Task Parallelism in Mixed-critical Systems,” in
Proceedings of the 26th Euromicro Conference on Real-Time Systems
(ECRTS), 2014.

[28] A. Kritikakou, T. Marty, and M. Roy, “DYNASCORE: DYNAmic
Software COntroller to increase REsource Utilization in Mixed-critical
Systems,” ACM Transactions on Design Automation of Electronic Sys-
tems (TODAES), vol. 23, no. 2, 2017.

[29] A. Kritikakou, C. Rochange, M. Faugère, C. Pagetti, M. Roy, S. Girbal,
and D. G. Pérez, “Distributed Run-time WCET Controller for Concur-
rent Critical Tasks in Mixed-critical Systems,” in Proceedings of the
22nd International Conference on Real-Time Networks and Systems.
ACM, 2014.

[30] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the Interna-
tional Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization. IEEE Computer Society, 2004,
p. 75.

[31] J. Lelli, G. Lipari, D. Faggioli, and T. Cucinotta, “An Efficient and
Scalable Implementation of Global EDF in Linux,” in Proceedings of
the 7th International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT), 2011, pp. 6–15.

[32] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline Scheduling
in the Linux kernel,” Software: Practice and Experience, vol. 46, no. 6,
pp. 821–839, 2016.

[33] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common Objects in
Context,” in Proceedings of the European Conference on Computer
Vision. Springer, 2014, pp. 740–755.

[34] Linux, “hrtimers - Subsystem for High-resolution Kernel Timers,”
https://www.kernel.org/doc/Documentation/timers/hrtimers.txt, Last Ac-
cessed: May 2019.

[35] Linux, “SCHED_DEADLINE Scheduling Policy,” https://www.kernel.
org/doc/Documentation/scheduler/sched-deadline.txt, Last Accessed:
May 2019.

[36] D. Liu, N. Guan, J. Spasic, G. Chen, S. Liu, T. Stefanov, and W. Yi,
“Scheduling analysis of imprecise mixed-criticality real-time tasks,”
IEEE Transactions on Computers, vol. 67, no. 7, pp. 975–991, 2018.

12

[37] D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi,
“Edf-vd scheduling of mixed-criticality systems with degraded quality
guarantees,” in 2016 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 2016, pp. 35–46.

[38] NA, “Will be made available after publication,” 2019.
[39] S. Ramanathan, A. Easwaran, and H. Cho, “Multi-rate Fluid Scheduling

of Mixed-criticality Systems on Multiprocessors,” Real-Time Systems,
vol. 54, no. 2, pp. 247–277, 2018.

[40] J. Redmon, “Darknet: Open Source Neural Networks in C,” http:
//pjreddie.com/darknet/, 2013–2016.

[41] F. Santy, L. George, P. Thierry, and J. Goossens, “Relaxing mixed-
criticality scheduling strictness for task sets scheduled with fp,” in 2012
24th Euromicro Conference on Real-Time Systems. IEEE, 2012, pp.
155–165.

[42] H. Su, P. Deng, D. Zhu, and Q. Zhu, “Fixed-priority Dual-rate Mixed-
criticality Systems: Schedulability Analysis and Performance Optimiza-
tion,” in 2016 IEEE 22nd International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA). IEEE, 2016,
pp. 59–68.

[43] H. Su, N. Guan, and D. Zhu, “Service guarantee exploration for mixed-
criticality systems,” in 2014 IEEE 20th International Conference on
Embedded and Real-Time Computing Systems and Applications. IEEE,
2014, pp. 1–10.

[44] H. Su and D. Zhu, “An Elastic Mixed-criticality Task Model and
its Scheduling Algorithm,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2013, pp. 147–152.

[45] H. Su, D. Zhu, and S. Brandt, “An Elastic Mixed-Criticality Task Model
and Early-Release EDF Scheduling Algorithms,” ACM Transactions on
Design Automation of Electronic Systems (TODAES), vol. 22, no. 2,
p. 28, 2017.

[46] M. M. Tikir and J. K. Hollingsworth, “Efficient Instrumentation for
Code Coverage Testing,” in ACM SIGSOFT Software Engineering Notes,
vol. 27, no. 4. ACM, 2002, pp. 86–96.

[47] M. Vanga, A. Bastoni, H. Theiling, and B. B. Brandenburg, “Supporting
Low-Latency, Low-Criticality Tasks in A Certified Mixed-Criticality
OS,” in Proceedings of the 25th International Conference on Real-Time
Networks and Systems. ACM, 2017, pp. 227–236.

[48] S. Vestal, “Preemptive Scheduling of Multi-criticality Systems with
Varying Degrees of Execution Time Assurance,” in Proceedings of the
28th IEEE Real-Time Systems Symposium (RTSS), 2007, pp. 239–243.

[49] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra et al., “The Worst-
case Execution-time Problem - Overview of Methods and Survey of
Tools,” ACM Transactions on Embedded Computing Systems, vol. 7,
no. 3, p. 36, 2008.

13

