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ABSTRACT

Route suggestions for public transportation has been inte-
grated to different mapping services such as Google Maps or
Bing Maps. However, those suggestions are often found to
be unreliable for the end-users, mainly because of two rea-
sons. Firstly, these route-finding techniques do not consider
traffic conditions on the roads. Secondly, routes are gener-
alized for every user, completely ignoring their commuting
patterns.

We propose an architecture with a modified routing algo-
rithm that aims to solve both the problems. Our system
incorporates both real-time and historical traffic-data into
public-transit routing framework. We also personalize tran-
sit routes for users by analyzing their commuting behavior.
By experiments, we show that our system significantly im-
proves the quality of route-suggestions compared to state-
of-the-art techniques with minimal overhead (as low as 20
ms for a 3 km long route).

1. INTRODUCTION

Public transportation is one of the important means of com-
munications around the globe. Wider adoption of public
buses, trains etc. is encouraged by the governments for a
number of reasons. Increasing use of public transport can
help to alleviate environmental problems, for example by ef-
ficient usage of fuels. There are efforts in the research com-
munity as well to promote public transit. As part of that on-
going effort, a standard format is designed to represent the
public transportation, its schedule and related information.
This standard is named General Transit Feed Specification
(GTFS) [2]. GTFS-formatted data has enabled software
systems to manipulate public transit data efficiently. The
standardization of public transportation data in the form of
GTFS feed has opened up numerous possibilities of visual-
izations, optimizations and improvements related to public
transit [8]. Many companies which provide map-related ser-
vices, have adopted GTFS feed into their system [18, 23, 3,
5]. Most of these companies give public routing suggestions
through various interfaces (online, mobile application etc.),
mostly following Dijkstra’s Algorithm for shortest path [11].
Our work revolves around public routing suggestions and its
two main limitations. Firstly, the current implementations
of public routing suggestions totally ignore the traffic con-
ditions of roads. Secondly, the suggestions are generalized
and same for every users. They don’t account for users’ com-
muting behavior in terms of their walking or cycling speeds.
Because of these two drawbacks, public transit routing sug-
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gestions are often not accurate. We want to mitigate these
two limitations to improve the routing suggestions.

Real-time and historical traffic conditions of roads have al-
ready been well studied in the literature [14, 22, 6, 20, 31,
21, 19, 24]. Some industry-standard applications [18, 3]
show real-time and historical traffic conditions in their soft-
ware systems as well. However, the traffic information both
real-time and predicted, has only been used for private car
routing suggestions. This has been largely ignored in public
routing in all the applications that we know of. This makes
public routing suggestions unreliable.

The improvement of route suggestions in public transit is
important because it can increase the reliability in public
transport among people. Reliance on public transportation
translates into many benefits as described earlier. As the
current routing suggestions for public transits do not con-
sider delays due to traffic, one may easily get delayed reach-
ing his/her destination taking the public buses. This is re-
ally inconvenient for the end-users. Another common issue
is that the state-of-the-art applications do not take into ac-
count the different walking-speeds for various users; rather,
they just provide a generalized result for every user. To the
best of our knowledge, we are the first to propose a system
that can integrate both real-time and historical traffic feed
along with the end users’ commuting pattern for routing
suggestions in a public transportation system.

To briefly put, our contributions are:

1. Analyzing real-time and historical traffic data and in-
tegrating traffic-speed into the public routing algo-
rithm.

2. Analyzing the end users’ commuting pattern and de-
riving users’ average walking-speed to provide person-
alized suggestions of public-transit routes.

The paper is organized as follows. In the next section, we
describe the relevant works and previous research done re-
lated to this problem. In Section 3, we formally describe
our problem. We demonstrate the architectural overview
of our solution in Section 4. Some of the implementation
details are mentioned in Section 5. Section 6 demonstrates
our implementation for future traffic prediction and how it
integrates with our system. In Section 7, we present the
conducted experiments and compare with the existing tech-
niques. Finally, we conclude and discuss future works in the
last section.



2. RELATED WORK

GTFS [2] was standardized around 2009 by the commu-
nity of public transit agencies, developers with primary help
from Google. Since then, many applications [18, 23, 3, 5]
have integrated it to their systems to suggest public routes.
Google Maps [18], being the frontier of all these applica-
tions, suggests public transportation routes to its web-based
and mobile-based users. Google Maps and other applica-
tions collect data in the form of GTF'S from various agencies
around the globe and integrates it to their mapping system.
However, they just work on the agency-provided data to give
routing suggestions from a source location to a destination.
They do not consider any probable delay due to traffic.

On the other hand, the recent development of mobile lo-
cation tracking systems have helped various software sys-
tems to keep track of real-time traffic information on their
servers. Google keeps track of the real-time traffic levels [15]
by monitoring the users’ mobile devices [16] and also using
other services such as Waze [29]. Although this traffic infor-
mation is utilized to suggest optimized routing for private
cars, it has not been incorporated in the domain of public
transportation. Part of our work aims to mitigate this chal-
lenge. Apart from real-time traffic information, there are
previous research works [24, 31, 26, 10] which try to exploit
the historical traffic data to predict future traffic-conditions.
These are complementary to our work because a higher ef-
ficiency in traffic prediction will only improve our routing
suggestions.

There has been research on real-time tracking of public trans-
portation. Thiagarajan et. al. has shown how crowd can be
utilized to track public buses, underground metro rails etc
[27]. Bast et. al has recently shown how the real-time move-
ment of public transportation system can be integrated and
visualized in maps [7]. TransitApp [5] also shows real-time
bus status in their mobile application. However, none of
these approaches try to suggest routes considering the delay
caused by traffic. In our opinion, the reason for not ad-
dressing this problem is the high time-complexity to process
the large amount of real-time public transit data. It is also
cost-expensive. For example, Edmonton Transit System (a
public bus agency for the city of Edmonton) [13] recently
planned to deploy GPS devices and other advance features
on their buses by expending a hefty 13.9 million Canadian
Dollars. Compared to these expensive solutions, our pro-
posed system has low overhead in terms of time-complexity
and is cost-effective as well.

The work which is most closely related to our paper, is done
by Cuong [12]. He developed an algorithm, CrowdRoute
which utilizes the real-time information on trip delays pro-
vided by various users. Our algorithm does not depend on
any trip related information provided by crowd for a partic-
ular route. In contrast, our system utilizes the traffic infor-
mation and personalized data (walking and cycling speed)
to recalculate the estimated time for a given route. In this
way, our system is more generic than CrowdRoute because
of the latter’s dependence on specific trip-information. Ad-
ditionally, an efficient implementation of CrowdRoute needs
extensive infrastructural set-up to receive updates from mo-
bile users. On the contrary, our system uses the already
available information and is more cost-effective.

3. PROBLEM DEFINITION

In this section we formally describe the problems in pub-
lic route suggestions. The problem can be divided into two
distinct parts: 1) Incorporating traffic feed in public route
suggestions, 2) Incorporating end user’s commuting behav-
ior.

3.1 Incorporating Traffic Feed

Public transit routing suggestions consist of several trips in
buses, trains or metro railways. The routing suggestions
are based on the schedules provided by the public trans-
portation agencies in form of GTFS. These agencies make
a generalized schedule, ignoring the probable traffic on the
roads. Even if they care for the probable road-traffic, they
may not be accurate. As the traffic-information on the roads
is mainly ignored, the delay due traffic is also not accounted
for in the routing suggestions. This makes the suggestions
imprecise. Our challenge is to incorporate the available traf-
fic information of roads into the routing suggestions, so that
we can make them more realistic.

3.2 Incorporating End Users’ Commuting Be-

havior

One important aspect of public route suggestions is that
they consist of steps which involve walking. For instance,
a user must walk to a nearby bus-stop to begin his/her
journey. In all the current state-of-the-art applications, the
walking-speed is assumed to be same for every user. In real-
life, this is certainly not the case. For example, a fairly old
lady is most likely to have a different average walking speed
than a young gentleman. Existing applications ignore this
fact, and it leads to poor suggestions. Our challenge is to
understand the commuting patterns of end users and utilize
it in route-suggestion. Now-a-days, different kinds of sen-
sors are pretty common in mobile phones. We can use the
data related to user-movement recorded by the sensors and
integrate it into the public routing algorithm.

The above problems in public transport are the motivations
for our work. We try to resolve both the challenges and
present a unified solution for public route suggestions.

4. ARCHITECTURE

We provide an overview of our architecture in this section.
We have divided our system into certain interrelated generic
components. The architecture is outlined in Figure 1.

Our system has an interface which takes the source, destina-
tion and departure time from the user. This has been shown
in Figure 1 by the top most rectangular box, named “Appli-
cation Interface” (A. Int). This component sends the above
mentioned information to the core of our system, “Main-
Frame” (MF) (middle box in Figure 1). MF then asks
information to four different components in the back-end,
the four boxes in the last row in the same figure. We will
now describe each of these four components. We include
only an overview of those components in this section. More
details regarding the implementation of those components
have been demonstrated in the next section.

4.1 Back-end Components

4.1.1 Accelerometric Sensor Data
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Figure 1: Architecture of our system

Accelerometric Sensor Data (ASD) has the analyzed data
of user’s commuting behavior. For our implementation, we
have used Google Fit [17] service to get the average walking-
speed of a user. We keep track of a user’s walking speed for
last one week. ASD provides the speed to the MF.

4.1.2 Real-time Traffic

Real-time traffic (RTT) component retrieves the real-time
traffic data, in our case from a web-service. Real-time traf-
fic is generated in custom format. We analyze that for-
mat and save the data in a structured way. We have used
HERE Maps [3] Traffic Application Programming Interface
(API) to get real-time traffic data. HERE Maps provides a
JSON (or XML)-formatted data which we manually parse
and store into (Java) classes. MF queries for the traffic-
speed on certain road-segments to RT'T. The RTT compo-
nent filters relevant data and returns the speed back to MF.

4.1.3 Database

Database (DB) component contains the historically stored
traffic data and any additional details of various routes in a
given city. This component can be designed locally or can be
implemented as a service like HERE Maps Traffic API. Ad-
ditional routing details are also stored in database because of
probable limitations of the next component, Routing Data
(RD).

4.1.4 Routing Data

Routing Data (RD) component takes the source, destina-
tion location and departure time. It supplies a generalized,
unmodified routing suggestions to MF. The suggestions pro-
vided by RD are essentially the same as given by existing
applications, such as Google Maps, Bing Maps or HERE
Maps. MF takes the unmodified routing suggestion and pro-
cesses it with results from other components to suggest more
accurate routes.

4.2 Modified Route Calculation Algorithm

Here we describe our algorithm to compute the modified
routes. This algorithm is a part of MainFrame or MF in our
architecture. But first, let us look at a sample unmodified
route suggestion. An example can help to understand our
algorithm in a better way.

A sample route consists of several steps with time-stamp of
the step, length of the step, time (in seconds) to complete the
step, details of the step and medium of the step (by bus or
by walking). Optionally, in case of a bus-rides, the step can
also include the source bus-stop, the destination bus-stop
or the intermediate bus-stops and lengths between them.
An example is given in Figure 2. The example presents a

sample routing result from 7708, 109 Street, Edmonton, AB,
Canada to University of Alberta, Canada.

7708, 109 St.
Edmonton
(Source)

Mon Mar 30 10:43:30 MDT 2015 160m 330sec &
1. Head east on 77 Ave NW. Go for 24 m. k
2. Turn left onto 109 St NW. Go for 136 m.

Mon Mar 30 10:49:00 MDT 2015 1975m 540sec

313 109 Street + 78 Avenue
3. Go to the Bus stop 109 Street + 78 Avenue and take the bus 313 toward
1. Follow for 8 stops.

109 St.+
80 Av.

109 St.+
82 Av.

112 St.+
87 Av.
114 St.+
89 Av.

218m

111 St+ 112 5t+ 112 5t+ 112 St+
82Av.  Jo00m LB2AV.  Jo02mlL84Av.  J730m (86 Av.

24m

Mon Mar 30 10:58:00 MDT 2015 Om Osec

313 114 Street + 89 Avenue
4. Get off at 114 Street + 89 Avenue.

Mon Mar 30 10:58:00 MDT 2015 237m  485sec 2
5. Head west. Go for 13 m.
6. Turn left. Go for 180 m.

7. Turn right. Go for 44 m.

8. Arrive at 87 Ave NW.

Reached at Mon Mar 30 11:06: U"“’(eDrS‘?' ot't{klberta
05 MDT 2015 estination

Figure 2: Example of a public routing suggestion

There are total 8 steps (numbered) in the routing suggestion
in Figure 2. For better representation and space-constraint,
we have showed the routing result in a graphical form as
grouped events. In our actual implementation, it is still
in textual form. In Figure 2, each rectangular box repre-
sents a medium of transportation event. For example, the
topmost rectangular box connected to the source is for a
walking event. The first line in the rectangular box tells the
time-stamp (24-hour format) at which the event(s) start, the
length of the event(s) and the duration of it. The next lines
are detailed information of the event. The steps in an event
is numbered and inscribed inside the rectangular boxes. The
topmost rectangular box has two steps in it. Starting time
for the event is on Monday 30th March’15 at 10:43:30 in
Mountain Daylight Time. Total length for those two steps
is 160 meter, and duration is 330 seconds. The signs at the
right-hand side of the rectangular boxes tell the mediums of
the event. In case of the topmost box, it is walking. Next
event which is connected to the topmost box, is a public
bus-riding which starts at 10:49:00. The second line in case
of public bus-riding event represents bus-number and bus-
stop, separated by a white-space. In our example, the bus
is Route 313, and user has to take the bus from “109 Street
+ 78 Avenue” bus-stop. The public bus-riding event is then
connected with a series of rounded-rectangular boxes which
represent the intermediate bus-stops. The edges between
those boxes are labeled with the lengths between those bus-
stops. For example, the length between the bus-stop “109
St. + 78 Av.” and “109 St. + 80 Av.” is 206 meters. The
last bus-stop is connected to a public bus-riding event where
the user needs to get off from the bus. This is how a route
is interpreted. Now we will describe the algorithm through
which we improve the unmodified routing result with the
help of the data from other components of our architecture,
given earlier in Figure 1.

Algorithm 1 presents the pseudo-code for our algorithm.
The algorithm is extremely simple and has low overhead.



Algorithm 1 : Calculating the modified route considering
traffic-feed

1 function FindRoute ( Src, Dest, CurTime )

2 WalkSpeed = getFromASD ()

3 unmodifiedRoute = getFromRD (Sre, Dest,
CurTime, WalkSpeed)

4 modi fied Route = copy (unmodifiedRoute) > kept
a copy of modi fied Route for comparison

5 for each step in modified Route do

6 if step.type = “by bus” then

7 modi fied Duration = 0

8

9

for each stop in steps.intermediateStops do
realSpeed = getFromRT T (stopNames)

10 modifiedDuration += stop.length /
realSpeed

11 end for

12 delay = modifiedDuration - step.duration

13 modifyStep(step, delay) > this function
modifies this step and subsequent steps with
the delay

14 end if

15 end for

16 return modi fied Route

17 end function

We first get the walking speed from the user from the ASD
module. Then, we get the unmodified routing result from
the RD module. Important point to observe here is that we
pass the walking speed of a user in this module. This is done
because the unmodified result should consider the walking
speed of the user and suggest route accordingly; then we can
modify the route based on real-time traffic data. We check
each steps in the routing result whether the step’s medium
is “by bus”. For that kind of a step, we iterate a loop over all
stops within that bus journey. Inside the loop, we get the
real-time speed of traffic between the bus-stops. Once we’ve
the speed information, we calculate the modified duration
accounting for the traffic. After measuring the delay, it is
added to the concerned step and in all subsequent steps.

Because of the simplicity of our algorithm, it imposes no
real overhead on the existing route calculation methodology.
This is verified by experimentation, presented in Section 7.
Although we have only shown real-time traffic feed in Algo-
rithm 1, it can still be tweaked to account for the historical
traffic patterns which could be useful in predicting future
traffic. We have provided an explanation in Section 6 on
how traffic profiling can be used to predict future traffic-
level. There are previous research work which also talks
about traffic prediction [24, 31, 26, 10]. These works can be
hooked into our architecture (specifically, in the DB mod-
ule).

5. IMPLEMENTATION DETAILS

In this section, we present some of the important implemen-
tation for various components mentioned in the architecture
diagram in Figure 1.

5.1 Getting Users’ Walking Speed

We have used Google Fit [17] to get the end users’ walking
speed. Users can install the Google Fit app on their android-

based mobile devices to record their commuting patterns
like number of steps, distance traveled or walking speed and
store it in a central repository, called the Google Fitness
Store (see Figure 3). We query this information once the
users’ have been authorized. We use oauth2, an open stan-
dard for authorization of the end users. An HTTP GET re-
quest is constructed using Google Fit APIs to query against
the repository, which returns the users’ walking speed, both
instantaneous or average speed over a time interval.

Google

Fitness Store
—_— ’
e ~

— <

~ —<
- ~
Mobile Device _- N
- ~
-7 =~ ~
~ ~
Google Fit APIs Google Fit APls
Mobile App Web App

Device Sensors Client Device

Web Browser
Wearable Devices

Figure 3: Google Fit Platform®

5.2 Fetching Unmodified Route

We have used HERE Maps Routing API [3] to get the rout-
ing suggestions. The HERE Maps Routing API calculates
routes between two or more locations and provides addi-
tional route-related information. We construct an HTTP
GET request using user’s source, destination location, de-
parture time-stamp and walking-speed as query parameters.
Also, each request must include the authentication param-
eters (app_id and app_ code) to access the resources of the
API. Once the query is processed, we get a list of all possi-
ble routing suggestions between the source and destination
location at a given time. This is similar to how other rout-
ing applications like Google or Bing Maps functions. We
chose HERE Maps for our implementation to maintain con-
sistency across route planning as we make use of HERE
Traffic API to get the real-time traffic updates. The result
of HERE Maps Routing API and Google Maps API for rout-
ing are same because they all use GTFS data provided by
transit agencies.

5.3 Fetching Real-time Traffic-feed

We make use of HERE Maps Traffic API to get information
about the traffic levels in a particular route in real-time. To
obtain traffic data via the HERE Traffic API, it is neces-
sary to formulate a request that combines the URL and a
set of parameters to specify the required response (see URL
below). One of the parameters used is the bounding box
(bbox), which is created using the latitude, longitude coor-
dinates for source and destination locations of a given route.
Once the query is processed, the web service allows access to
real-time traffic flow data in XML or JSON, including infor-
mation on speed and congestion for the region(s) defined in
each request. The service can deliver additional data such

"https://developers.google.com/fit /overview



<RWS TY="TMC" EBU_COUNTRY_CODE="1" EXTENDED_COUNTRY_CODE="AO" TABLE ID="7" TMC_TAELE_VERSION="10.1">
<EW LI="107-01073" DE="EMERSON AVE" FET="2013-03-14T20:47:10E"
mid="0152c6dc-1359-4790-bbeb-41fed705275a| ">

<FIS>
<FI=

<TMC PC="8334" DE="E 46TH ST" QD="+" LE="0.02346" FC="1"/>
<CF TY="TR" SP="21.70" FF="26.80" JF="2.82049" CN="0.T70"/>

</FI>
<FI=

<TMC PC="8352" DE="E 38TH ST" QD="+" LE="0.32029"/>
<CF TY="TR" SP="31.52" FF="31.10" JF="0.0" CN="0.77"/=>

</FI>

Figure 4: Sample XML Response for Real-time Traffic

as the geometry of the road segments to which the flow data
relates to (see Figure 4 for details).

A request matching the latitude and longitude of source and
destination is formulated as follows:

http://traffic.cit.api.here.com/traffic/6.1/
flow.xml?app_id=DemoAppId01082013GAL
&app_code=AJKnXv84f jrbOKIHawSOTg
&bbox=39.8485715,-86.096986;39.835893,-86.0757964

The XML response in Figure 4 to a request like the above
one, gives the real-time traffic speed (SP) for different road
segments in a particular route within the bounding box spec-
ified in the user query. It also contains some other valuable
traffic parameters like the Free Flow (FF) speed, which is the
average speed that a motorist would travel if there were no
congestions or other adverse conditions like road accidents
or climatic disruptions. Jam Factor (JF) provides insight
about the congestion level on road segments, a higher value
of JF is an indication of higher levels of traffic. We have
used these parameters in our predictive model to forecast
traffic conditions as well.

We have analyzed the XML response in Figure 4. The node
named "RW?” represents a single roadway inside the given
bounding-box. In our example, "Emerson Ave” is the road-
way for which the real-time speed is given. The child-node
"F1” inside parent "RW?” represents the crossing roadways.
Speed and other information between the crossing roadways
are given as attributes and child-nodes of "FI”. For exam-
ple, a crossing roadway on "Emerson Ave” is "E 38th St”.
The free-flow speed and real-time speed between the previ-
ous crossing roadway and "E 38th St” are 31.10 km/h and
31.52 km/h respectively.

The traffic speed (SP) mentioned above is recorded for pri-
vate vehicles. We use a formula (see equation 1) to derive
the real-time speed of public buses (RB) by making use of
the scheduled bus-speed (SB) which is a fixed speed based
on their defined schedules.

RB = (SP/FF)*SB (1)

RB is the aligned speed in real-time traffic for any public
transport. Once, we have the RB speed component, we can
use it to find the actual delay for the all road segments for
which the real-time traffic feed is available.

5.4 Historical Traffic-feed

We maintain a local database containing historical feed of
traffic as well as the routing information about different
routes, bus stops and schedules in a given city. Part of
the historical data is synthetically generated to analyze and
predict future traffic speed. We’ve used it to show that our
architecture supports any predictive model to forecast traf-
fic speed, which can be integrated with our modified routing
algorithm and help the end user to plan future travels with
some valuable estimates about the traffic delay.

6. PREDICTION OF FUTURE TRAFFIC

We have used an example to show how our system can be
adjusted for route suggestions on a future date and time.
To assess the route prediction capabilities of existing appli-
cations like Google Maps or Bing Maps, we compared their
public route suggestions for a particular time on different
days of a week, and found out that the suggested routes are
the same. This does not qualify as a good predictive model
as one would assume that the route suggestions should vary
based on the predicted traffic on different days. We have
addressed this problem using our algorithm wherein the sug-
gested routes would vary on different days, given the pre-
dicted traffic speed is not the same. Our prediction is based
on the traffic speed predicted by the support vector regres-
sion (SVR) model [9]. The use of SVR is not uncommon in
traffic-level prediction and has been researched earlier [30].
This functionality would help the user to plan their travel
in advance in a more realistic way.

For our experiments, we looked at some historical samples
for traffic feed and synthetically generated our test data us-
ing a mean traffic-speed with an added variance in a normal
distribution. This allowed us to have some level of confi-
dence that our generated data was more realistic. We did
traffic profiling on the generated test data-set to analyze the
correlation between real-time traffic speed and the free flow
(FF) speed. As expected, the ratio of the free flow speed
to traffic speed would decrease during the peak hours of
traffic as shown in Figure 5. For our prediction-modeling,
we built a feature vector for each of the data points in our
test dataset containing the historical traffic speed. The fea-
ture vector contains attributes like the Jam Factor (JF),
Free Flow Speed (FF) and Route Information for which the
real-time speed was recorded. The real-time values of these
attributes are already available from the HERE Maps Traf-
fic API as shown in Figure 4. The test values for these
attributes were generated in a normal distribution curve,
around a mean value with an added variance, similar to the
way we generated our test data for historical traffic speed.



Once the feature vectors were generated for all data points,
we used it to train a SVR [9] model to help us predict traffic
speed on a future date and time. It is important to note
that the choice of the model, parameter tuning and feature
selection would play a major role in determining the accu-
racy of predicted traffic speed. However, we do not go into
any such details as its beyond the scope of this paper.

-
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Figure 5: Traffic Speed Profiling

We conducted experiments to get route suggestions on a
future date with our predicted traffic-speed and compare
the results against the traffic predictions done by existing
routing applications like Google Maps. The result for this
experiment is presented in the next section.
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Figure 6: Bounding box between 7708, 109 St and
University of Alberta

7. EXPERIMENTAL EVALUATION

In our experiment, we do the traffic analysis and route plan-
ning for different routes from Parkallen to University of Al-
berta in the city of Edmonton, Alberta, Canada. We choose
the source location as 7708 109 Street NW and the destina-
tion location as University of Alberta, shown as the bound-
ing box (red line) in Figure 6. The bounding box may have
multiple routes from source to destination. We use our algo-
rithm to analyze four different scenarios mentioned below.

1. Different walking speeds of a user results into different
route suggestions for the same source and destination
location at a fixed departure time.

2. Different level of real-time traffic might add some delay
in the travel time, which could lead to different arrival
time for same route-suggestion.

3. How a future route suggestion based on traffic speed
prediction can differ from existing approaches.

4. Our system imposes minimal overhead on the existing
route-suggestion techniques.

The first part of our experiment is done to show how differ-
ent walking-speeds can change the routing suggestions. The
Figure 7 sums up our result of this experiment. In this part,
the source location is 7708, 109 Street, and the destination
is University of Alberta. The distance between source and
destination is nearly 2 km. This small distance is enough to
show the difference of results with varied walking speed. We
have conducted this experiment for three types of walking-
speed: 0.5 m/s (solid line in Figure 7), 1 m/s (dashed-dotted
line) and 1.5 m/s (dotted line). The starting time from the
source location is fixed at 10:47:00 on 30th March’15 for this
experiment. As it can be seen from the Figure 7, the leftmost
trip (solid line) departs from the source location at 10:47:06
and reaches at 11:18:34. The trip at center (dashed-dotted
line) departs at 10:48:53 and reaches at 11:07:52. They both
go through the same bus-stop, but they follow different bus-
numbers (4 and 94). We can also notice that the walking
times for the first part of their journeys to the bus-stops are
different, in spite of distance being same. The rightmost
trip (dotted line) is different in multiple aspects from the
other two. The walking distance is only 160 m for this trip,
and the bus-stop is also different. This trip catches Bus
number 313 and reaches before the other two trips at the
destination.

7708, 109 St.
Edmonton

1_0.:‘%7.:04 0.5 m/sec
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foll667 sec
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i ;
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109 Street + 82 Avenue 109 Street + 78 Avenue

Bus-stop Bus-stop

Bus 313

Figure 7: Routing results for different walking-

speeds

This experiment shows how our system displays different
types of routes based on the walking-speed. It should be
noted that in our actual implementation, we take walking
speed from accelerometric sensors (like Google Fit service).
If we imagine that there are three different types of users
who are simultaneously searching for same route at the same
time on our system, they may get different results (like Fig-
ure 7) based on their commuting behavior, recorded by sen-
sors. Our demonstration proves that this should be benefi-
cial in terms of accuracy in route-planning.



Table 1: Free-flow (FF) vs. Real speed (RS) and
their Arrival-time Comparison

FF vs. RS Arrival Time
3.0 Mon Mar 30 11:12:42 MDT 2015
2.75 Mon Mar 30 11:11:52 MDT 2015
2.5 Mon Mar 30 11:11:03 MDT 2015
2.25 Mon Mar 30 11:10:13 MDT 2015
2.0 Mon Mar 30 11:09:24 MDT 2015
1.75 Mon Mar 30 11:08:34 MDT 2015
1.5 Mon Mar 30 11:07:44 MDT 2015
1.25 Mon Mar 30 11:06:55 MDT 2015
1.0 Mon Mar 30 11:06:05 MDT 2015

The next part of our experiment demonstrates how different
traffic levels can affect the arrival time of a trip following the
same route. Let us look at the route that we have shown
previously in Figure 2 as reference. With that example,
we assume that the traffic is only on the 82nd Avenue for
our demonstration. So, the length of the road in which the
traffic is simulated, is 726 m (324 + 200 + 202). We vary
the ratio of traffic (FreeFlow Speed / Real Speed) from 3.0
to 1.0. The ratio 1.0 implies that there is no traffic, and
the bus will be driven in its normal speed. The result we
get with ratio 1.0, is the same as we get from applications
such as HERE Maps or Google Maps. In Table 1, we can
see that if the traffic level is as high as 3.0 in the first row,
the trip is delayed to 11:12:42 from its normal (with ratio
1.0) 11:06:05. As the traffic ratio decreases, the arrival time
at the destination also comes down. This experiment shows
that our system is able to adapt to different traffic-levels
and gives arrival time accordingly, which is not possible in
state-of-the-art methodologies.
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Figure 8: Comparison of routes using predicted traf-
fic speed

In the third part, we demonstrate the effectiveness of our
system in predicting future route-suggestions. In Figure 8,
we compared our predicted result with Google Maps static
result. It is to be noted that this test was conducted on
March 23, 2015 for traffic prediction on a future date: April
06, 2015. As shown in Figure 8, our model takes into account
the predicted traffic speed as opposed to Google Maps which
has the same bus speed on different days of the week for
future route suggestions. Although this is done on synthetic
data-sets described in Section 6, we can assume real-data set

would also reflect similar kind of behavior with our system.
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Figure 9: Overhead of our algorithm with respect
to increasing distance

Lastly, we measure the overhead of our algorithm with in-
creasing distance. We have chosen Route 51 of Edmonton
Transit System [13]. We have conducted our experiment on
a route familiar to us because of proper and reliable interpre-
tation of poorly documented HERE Maps Traffic response.
The Route 51 is from Parkallen, Edmonton, AB, Canada to
University of Alberta, AB, Canada and is nearly 3 km long.
The Figure 9 represents the overhead of our algorithm with
increasing distance. We have taken all the bus-stops on the
route and calculated overhead of our system for the distances
from those bus-stops to the destination. We can see in Fig-
ure 9 that as the distance increases, the overhead also goes
higher because traffic-speed needs to be calculated for more
number of roads. The maximum overhead for a 3 km Route
is as small as 20 ms. In this experiment, we have made an
assumption that we already have the real-time traffic data
available in our system. This is a fair assumption because
generally a system should periodically store real-time traffic
data in its memory, and traffic-data should be available on
demand. Even if we assume the traffic-feed is stored in disk,
we can use caching for faster results. This kind of caching is
pretty common in case mapping services [25, 28] to improve
performance and reduce response-time. Overall, we can see
that our algorithm has fairly minimal overhead, provided
that common caching technique is employed for maps.

8. CONCLUSION AND FUTURE WORK

This paper presents a novel architecture which aims to sup-
port varying traffic levels on the roads and commuting be-
havior of the end users for public transportation. To sup-
port the robustness of our architecture, we have developed a
working system and conducted experiments to evaluate our
results. The results prove that our architecture is supportive
of our claimed objectives with an overall minimal overhead.

We have developed our system-prototype in Java 2, in some
parts using RESTful architecture. Our prototype implemen-
tation can be modeled as standalone application on mobile-
platforms (e.g - Android) or in web-services. We plan to
show our suggested routing results in visual maps for better
representation. On the other hand, there can be improve-
ments on the historical profiling of traffic data. An efficient

2 Available at https://github.com/sohamm17/MapsTraffic



predictive model for traffic levels can help the end users plan
their journey in advance with good reliability in the system.
We plan to use our system with historical data provided by
PeMS system [1] of California State Government for traffic
prediction as done in [4]. Moreover, other traffic incidents
like road accidents, constructions, bad weather conditions
etc. can be integrated with our routing algorithm to further
improve the route suggestions. Lastly, studying the user-
satisfaction of our system will certainly be very interesting,
but needs planned deployment on the public domain.
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